1、实际上,半导体中通常同时含有施主和受主杂质,当施主数量大于受主数量时,半导体是N型的;反之,半导体是P型的。 (3)半导体的电导率和电阻率 平局漂移速率:v= uE (u迁移率) 则用迁移率表示电导率为: N、P型: nqu;电导率一方面取决于杂质浓度,另一方面取决于迁移率。迁移率:反映半导体中载流子导电能力的重要参数。迁移率越大,半导体的电导率越高。通常电子迁移率要高于空穴迁移率。影响迁移率的因素:(1)掺杂浓度:在低掺杂浓度的范围内,电子和空穴的迁移率基本与掺杂浓度无关,保持比较确定的迁移率数值。在高掺杂浓度后,迁移率随掺杂浓度的增高而显著下降。(2)温度:掺杂浓度较低时,迁移率随温度的升
2、高大幅下降。当掺杂浓度较高时,迁移率随温度的变化较平缓。当掺杂浓度很高时,迁移率在较低的温度下随温度的上升而缓慢增高,而在较高的温度下迁移率随温浓度的上升而缓慢下降。(高斜率下斜:大幅度下降、平:变化较平缓、 )ing抛物:先升高再下降缓慢散射:载流子在其热运动的过程中,不断地与晶格、杂质、缺陷等发生碰撞,无规则的改变其运动方向,这种碰撞现象通常称为散射。(4)半导体中的载流子 价带:能量最高的价电子所填充的带 导带:最低的没有被电子填充的能带 载流子的运动形式:漂移:由电场作用而产生的沿电场方向的运动称为漂移运动。扩散:产生:电子从价带跃迁到导带 复合:倒带中的电子和价带中的空穴相遇,电子可
3、以从导带落入价带的这个空能级,称为复合 空穴和电子导电形成的实质:电子摆脱共价键而形成电子和空穴的过程,就是一个电子从价带到导带的量子跃迁过程。其结果是,导带中增加了一个电子而价带中出现了一个空能级,半导体中导电的电子就是处于导带的电子,而原来填满的价带中出现的空能级则代表到点的空穴。从实质上讲空穴的导电性反应的仍是价带中电子的导电性。杂质能级:如果能级在有电子占据时是电中性,失去电子后成为正点中心的杂志能级,称为施主能级;受主能级正好相反,在有电子占据时 是负电中心,而没有电子占据是电中性的。(此处的能级是杂质自己的能级) (5)多子和少子的热平衡 多子少子相对性:N型中,电子为多子,空穴为
4、少子;P型中,空穴为多子,电子为少子。形成热平衡的原因:电子从价带到导带跃迁形成一对电子和空穴,随着电子和空穴对的产生,电子-空穴的复合也同时无休止的进行。所以半导体中电子和空穴的数目不会越来越多。半导体中将在产生和复合的基础上产生热平衡。本征半导体的热平衡:本征半导体是指半导体中没有杂质而完全靠半导体本身提供载流子的理想情况。电子和空穴的浓度相等,这个共同的浓度称为本征载流子浓度 本征载流子浓度与禁带宽度、温度有关,与掺杂类型、浓度无关。2 np = ni 两者乘积为定值 浓度与温度的关系:在室温中本征载流子浓度很低,但随着温度的升高,而迅速增加。本征载流子浓度是一个完全确定的温度函数。非本
5、征半导体的热平衡:2 只不过这里N 要理解为总电子的浓度, np = ni也可以说就是掺杂施仍然遵循主杂质的浓度,P要理解为总空穴的浓度,也可以说是掺杂受主杂质的浓度。2、PN结 (1) 基本概念: 定义:在一块半导体材料中,如果一部分是N区,一部分是P区,在N区和P区的交界面形成了PN结。 突变结:在交界面处,若杂质分布有一个突变 扩散结:杂志浓度逐渐变化 性质:单向导电性。P + N- 通 P- N+断,且通时电流随电压增加很快 结PN平衡 )2(指没有外加偏压情况下的PN结。 自建场:电场方向n-p. (3) PN 结的正向特性(扩散运动为主) 外加电压与自建电场方向相反,打破了扩散漂移
6、的相对平衡,载流子的扩散运动超过漂移运动,这是将有源源不断的电子从N区到P区,成为非平衡载流子,称为注入效应。 电子电流和空穴电流相互转换,在各个区域不同,但是通过每个面的电流之和相同,所以PN结内部电流是连续的,PN结内电流的转换并非电流中断,而仅仅是电流的具体形式和载流子的类型发生了变化 (4) PN 结的反响特性(漂移运动为主) 反向抽取作用: 自建场和外加场一致,使得空穴、电子分别被拉回P、N区。 反向电流趋向一个与反响偏压大小无关的饱和值,它仅与少子浓度、扩散长度、扩散系数有关,也被称为反响饱和电流。 PN结单向导电性由正向注入和反向抽取效应决定。(5) PN结的击穿 反向偏压到达击
7、穿电压 击穿机理:雪崩击穿,隧道击穿 (6) PN结的电容 电压与空间电荷区的电荷量:电荷量增大 ,电压增大;电荷量减小,电压减小 Vt = V d-V,V是外电厂施加的偏压,正向偏压V0,反向偏压V0,Vd是自建势 外电压 电压变化 电荷区宽度变化 电容变化 正向偏压 增加 减小 增大 正向偏压 减小 增大 减小 反向偏压 增加 增大 减小 反向偏压 减小 减小 增大 可用一个图像来表示 计算公式 Ct = ? ? S/Xm 0s 从公式中可以看出,PN结的电容是一个随外电压变化的函数 3、双基晶体管(BJT) 基本结构:由两个相距很近的PN结组成,双极晶体管又可以分为 PNP和NPN型两种
8、。三端:发射极(e);基极(b);收集极(c) 两结:发射区和基区构成发射结;收集区、基区构成收集结。 正常使用条件:发射结施加正向小偏压,收集结施加反向大偏压。(1) 电流传输机制 载流子运输过程:发射结注入基区的非平衡少子能够靠扩散通过基区,并被 收集结电厂拉向收集区,流出收集极,使得反向偏置收集结流过反向大电流。非平衡少子的扩散运动是晶体三极管的工作基础。(2) 电流传输机构 形成电流的原因: 发射结的正向注入作用和收集结的反向抽取作用,使得有一股电子流由发射区流向收集区 各部分电流具体分析 位置 电流机制 图形标识发射结 由发射区注入基区的电子扩散电流(X2),这部分能传输到基区,成为
9、收集结电流的主要部分;注入发社区的空穴扩散电流,成为基极电流的一部分。发射区 空穴电流转换为电子电Ie = Ip(X1) + In(X2) 流,成为发射极的电流 基区 电子电流在扩散中复合,Ib = Ip(X1) + Irb Icbo 变成基极电流 收集结和收集区 扩散到达收集结边界X3Ic = Ie Ib 的电子扩散电流,在电场作用下变为流经(X4)的漂移电流;收集结的反向漏电电流 图形表示:(3) 晶体管的放大系数 基本接法:共基极接法,共发射极接法 共基极:(如右图) 1、 特点:积极作为输入和输出的公共端。2、 定义为负载电阻为零时,收基极电流Ic与发射极电流Ie的比值 0 = Ic
10、/ Ie 0 3、 对a的分析:总小于1;越大放大能力越好 0 共发射极 发射极作为输入与输出的公共端 2、 )的比值Ib)和基极电流(Ic定义为收集极无负载时,收基极电流(0 = Ic / Ib 3、 对的分析: 越大电路的放大效果越好;与的关系推到为 0 0 (4) 晶体管的直流特性曲线 共基极: 输入特性曲线: Ie Veb 之间的关系 输出特性曲线: Ic Vcb之间的关系 共发射极: Ib Veb 之间的关系 Ic Vce之间的关系 共发射级直流输出特性曲线分析:区域 分析 放大区 饱和区 截止区 发射结正偏,收集结反偏发射结收集结都正偏发射结收集结都反偏4、 MOS场效应晶体管 (
11、1) MOS场效应晶体管的基本结构 类型对比 名称 衬底 n-MOS P-Si 沟区 结构n+ npn 源漏区别 电位低源 电位高漏 漏-源 p-MOS N-Si p+ pnp 电位高源 电位低漏 漏-源(2) MIS的结构 反型层的形成过程(p型半导体):1、 开始加正电压时,空穴排斥到远端,吸引少电子到半导体表面 2、 随着电压的增大,负空间电荷区加宽,同时被吸引到表面的电子也随着增加。3、 当电压达到阈值电压,吸引到表面的电子浓度迅速增大,在表面形成了一个电子导电层,即反型层。(3) MOS场效应管的直流特性 阈值电压:在MOSFET中,使硅表面开始强反型时的栅压为MOSFET的预制电压
12、Vt,阈值电压有时也叫开启电压。当栅压Vg = Vt时,表面开始强反型,反型层中的电子形成导电购到,在漏源电压的作用下,MOSFET开始形成显著的漏源电流。 MOSFET电压和电流的关系:线性区:V 较小的时候,沿沟道的电势变化DS较小。I 随V线形增加。饱和区:随着V 的增大,线性关系偏离越来DSDSDS越大,当V = V V时,漏极家短,电子数目很少,TGSDS(阈值电压)(基级和源)(源漏电压)形成高阻区,但由于电厂很强,可以把狗盗中的电子拉向漏极。增加电压,只降落在高阻区上,所以I不再增加,此时达到饱和。击穿区:IDS迅速增DS大,直至引起漏-衬底的PN结被击穿。 直流特性曲线:转移特性曲线:固定V 和 V ,可测量I 与 V 的关系曲线。 GSDSDSBS输出特性曲线:变化V 和 V,测量 I 与 V 的关系曲线。 GSDS BSDS类型 截面 输出特性 转移特性 N沟增强型 N沟耗尽型 P沟增强型 P沟耗尽型 微电子概论之集成电路制造工艺部分 1、单项工艺的实现和注意事项 ?(供参考使用的符号) (1)制膜工艺 氧化:生长出二氧化硅 二氧化硅的作用: 在MOS集成电路中,二氧化硅曾作为MOS期间的绝缘栅
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1