1、衣着居住家庭设备医疗保健交通和通信教育文化其他商品6905.511612.121923.711562.551523.323521.203306.82975.37天津6663.311274.911763.441174.621415.392699.532116.01836.823927.261020.031372.25809.85955.951526.601203.99387.403558.041094.581327.78832.74851.301487.661419.43415.444962.401859.841418.601162.871239.362003.541812.07765.1352
2、54.961295.081385.62929.371208.301899.061614.52643.154252.851272.431468.29839.311108.511541.371468.34562.484348.451194.591185.96723.581082.961363.621190.87476.898905.951558.242225.681826.221140.823808.413746.381394.866060.911338.751187.741193.81962.452262.192695.52647.067066.221658.211518.061109.4212
3、48.903728.232816.12811.515246.76954.301501.39690.66907.581365.011631.28467.776534.941167.051661.841179.84773.262470.181879.02667.004675.16978.761114.49914.88641.231310.211429.30389.064827.611463.711510.841013.82938.862203.991538.44518.274212.761265.531087.08977.52919.831573.641373.94484.765363.68125
4、9.761172.11814.81915.721382.201489.67347.684943.891123.491292.55940.79790.761975.501526.10434.257471.881065.712005.151370.28948.183630.622647.94773.17广西5074.49778.291237.91884.85779.082000.571502.65349.485673.65615.591342.29729.86783.341830.801141.81360.915847.901516.131205.661079.271050.621718.7314
5、74.88540.635571.691099.761226.141020.16735.261757.521369.47532.524565.85853.391102.99857.55578.331395.281331.43311.574802.261127.95827.84570.46822.411905.861350.65381.385184.18873.83781.12428.03424.101278.00514.44527.745040.471224.95914.261100.511502.441857.60500.424182.471049.681139.85660.48874.051
6、289.801158.30413.374260.271026.261055.15723.23854.251293.45967.90406.934483.441265.751247.14885.36978.121637.611441.18521.47新疆4537.461209.04888.16791.43912.991377.671122.18493.56 单位:元资料来源:2021年?中国统计年鉴?2.2聚类分析运用R对表1数据进展Q型聚类分析。得到聚类图如下从上图可以看出a) 如果根据各地区城镇居民人均全年消费状况把31各地区分为2类,结果为:第一类:第二类:其他地区这样分类不能突出城市之间
7、的差距,只能说明市经济在我国最为兴旺。b) 如果根据各地区城镇居民人均全年消费状况把31各地区分为3类,结果为:,天津,、 第三类:这样分类只显示了经济较为兴旺地区,而没有对其他地区进展细分。c) 如果根据各地区城镇居民人均全年消费状况把31各地区分为5类,结果为: 第二类: 第四类:第五类:,天津,。是国际大都市,经济最为兴旺。有其特殊的政治背景和特殊的地理位置。位于我国北部边疆,地理位置较为特殊,故单独归为一类。,天津,这些城市经济都比较兴旺,人均消费性支出高。这样分类较为合理。2.3主成分分析1计算相关矩阵:x1x2x3x4x5x6x7x810.3590.7350.7840.3830.8
8、740.8270.8260.390.6030.7340.4890.5780.6480.8290.5830.8070.8020.570.830.9040.8540.5370.6230.8920.8280.8532求相关矩阵的特征值Comp.1Comp.2 Comp.3Comp.4Comp.5 Comp.6 Comp.7Comp.8主成分的标准差2.4411.0060.6160.4770.4140.3430.2830.236特征值5.9571.0120.3790.2270.17150.1180.08030.0555方差奉献率0.7450.1260.0470.0280.0210.0150.010.0
9、07方差累计奉献率0.8710.9180.9470.9680.9830.9933确定主成分由所得结果可以看出前两个特征值的累计奉献率已到达87.1%,这说明前两个主成分已根本包含了全部指标具有的信息。因此,我们提取2个特征值。碎石图碎石图表现出从第三个主成分开场折线变得平坦,这与提取两个主成分相符。4主成分得分Comp.2 Comp.3Comp.6 Comp.8-5.579-0.765-0.549-0.1299-0.46560.24-0.172-0.1896-2.971-0.323-1.033-0.72410.517630.21430.2199-0.32011.5422-0.243-0.983
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1