ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:2.21MB ,
资源ID:14108928      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14108928.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(盾构机结构有限元分析规范文档格式.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

盾构机结构有限元分析规范文档格式.docx

1、同时,在对模型进行处理过程可以防止在后续分析过程中出现由于结构的拓扑退化现象而造成分析失败。处理之后的模型结构如图2b所示。 图2a 设计模型 图2b 分析模型图2 中盾设计模型与分析模型1.1.2 中盾前处理与分网将简化处理后的模型转换为STEP(或者IGES、X_t)格式,并导入ANSYS workbench中,定义模型材料属性,弹性模量E=200Gpa,泊松比为0.3,密度为7.8e-6Kg/mm3。对模型进一步切分与分网,如图3所示。图3 中盾模型分网1.1.3 边界条件施加(力的边界条件与位移边界条件)由图1所示的盾体载荷分布情况,分别计算垂直于侧向水压于土压,分别施加在盾体外壳表面

2、。对于施加在盾体侧向压力为梯度载荷,需要根据载荷梯度情况编程施加。在整体坐标系的Y向施加重力加速度g以考虑盾体自身重力。中盾与前方切口环采用螺栓连接,同时切口环连接处结构具有较好的刚度,因此在施加约束时将切口环与中盾连接表面视为固定约束。图4 中盾模型边界条件施加1.1.4 求解与后处理定义了边界条件后,在WB求解模块输入关心的应力应变以及位移参数,求解。图5 中盾变形与等效应力云图 图6 中盾变形与应力随圆周位置变化曲线1.2 尾盾1.2.1 尾盾前处理尾盾的分析过程与中盾类似,同样是对盾体进行三维建模,导入,前处理以及分网设定边界条件以致求解,后处理的过程。二者区别在于对边界条件的设定,虽

3、然在尾盾与中折盾连接处部位与盾体其他位置相比较刚度较好,变形较小,但考虑尾盾与中折盾在铰接密封处的自由度,对于此处的位移约束条件最好不采用直接的固定约束,本次分析中对于此处的处理采用的是圆柱约束,即约束该处的径向位移与轴向位移,但释放切向自由度。对于在盾体上所施加的载荷与中盾相同。图7 尾盾模型、分网与边界条件施加1.2.2 求解与后处理定义求解关注位置的等效应力与变形,求解。图8 尾盾变形与等效应力云图二 刀盘的有限元分析(结构静力学分析与疲劳分析)盾构在掘进中,刀盘通过牛腿上的法兰盘与切口环螺栓连接,推进油缸与切口环连接,推进力通过切口环向刀盘传递;刀盘驱动提供的扭矩经法兰盘和牛腿传递到刀

4、盘使刀盘产生旋转运动。通过上述对刀盘动力来源的分析,可以知道盾构刀盘在施工中,主要承受如下作用载荷:1) F:推进力作用于岩土掌子面传递给刀盘的反作用力;2) T:刀盘驱动提供的扭矩;3) q:刀盘周边土压与水压;4) G:刀盘本身自重。与F、T相比较,刀盘周边的土压与水压载荷q对于刀盘的影响较小,因此在进行分析时,将忽略这部分的载荷,仅考虑作用在刀盘上的F、T和自重G的作用。同时刀盘在掘进过程中存在着:正常掘进、最大推力以及脱困三种工作状态。正常掘进:刀盘受到F、T和G的作用;最大推力:F最大,推进系统溢流压力;脱困状态:T最大,刀盘驱动最大扭矩;图9 盾构刀盘结构受力分布图2. 2.1 刀

5、盘结构静力分析(去除刀箱简化模型)2.1.1 刀盘模型建立同样采用三维建模软件,建立刀盘结构模型,对于设计模型与分析模型的区别除了上节盾体模型简化所提到的之外,还有对于刀盘上的刀箱以及刀具的简化。该模型分析刀盘受载强度与变形情况,而对于岩土与刀盘刀具的相互作用情况简化为岩土直接对于刀盘面的反作用力(实际情况是:在推进力作用下,刀盘上的刀具与岩土作用,破碎剥落岩土,若以此建模,需在刀盘上的各刀具位置处建立用于模拟刀具与岩土作用的弹簧单元,较为复杂,分析意义也不大)。因此在模型处理过程中,将刀盘上的刀箱与刀具去除。所建立的分析模型如图10所示。 图10 盾构刀盘设计模型与分析简化模型2.1.2 刀

6、盘模型前处理与分网将简化处理后的模型转换为STEP(或者IGES、x_t)格式,并导入ANSYS workbench中,定义模型材料属性,弹性模量E=200Gpa,泊松比为0.3,密度为7.8e-6Kg/mm3。对模型进一步切分与分网,如图11所示。图11 刀盘前处理与分网2.1.3 施加边界条件约束刀盘法兰盘端面的所有自由度,在刀盘上施加F与T载荷。将岩土作用于刀盘的推力F转换为作用于刀盘与岩土接触面的平均压力进行施加。刀盘扭矩T将其等效为在刀具安装位置的切向力进行施加,同时施加惯性载荷g。考虑三种工况分别对刀盘进行加载。图12 刀盘边界条件施加2.1.4 后处理通过上述刀盘边界条件的施加,

7、分别计算三种工况下的应力与变形情况。得到应力与变形云图如下所示。保存上述结果,以此刀盘结构的静力分析为基础,将得到的求解结果作为下一阶段刀盘动态分析的输入条件。a 正常推进工况刀盘变形与应力云图b 最大推力工况刀盘变形与应力云图c 脱困工况刀盘变形与应力云图图13 刀盘变形与应力云图图14 刀盘部件应力云图(牛腿与辐条)2.2 刀盘静力分析(载荷施加于刀箱处)2.2.1 刀盘模型建立图15 盾构刀盘设计模型与分析简化模型图16刀盘分网与边界条件施加在此处对刀盘的模型简化过程中,未删除刀箱结构,仅将刀具删除,其他模型简化过程与前述一致。对于刀盘边界条件的施加与前述2.1的区别在于,此次的载荷施加

8、于刀具安装刀箱的位置,载荷的处理与分解与上述类似。考虑盾构推进力通过刀盘上安装的刀具作用于开挖岩层,并认为刀盘上的每把刀具所受载荷是均匀的,将其转换为作用于刀具安装位置的载荷。同样对于刀盘扭矩T也是将其转换为作用在刀具上的切向力。具体载荷施加状态如图16所示。图17 刀盘变形与应力云图2.3 刀盘结构动态特性分析2.3.1 刀盘预应力模态分析通过考虑刀盘在自重以及岩土反作用力,刀盘周边岩土的摩擦阻力作用下而在刀盘上形成的预应力状态,提取该状态条件下刀盘的前五阶固有频率。并以此所得到的频率为基础,对刀盘在一定频率范围内的稳态响应进行分析,考察结构的持续动态特性,确定刀盘的振动特性以及易出现疲劳损伤的位置。图18 刀盘预应力模态分析(5阶振型)2.3.2 刀盘疲劳寿命分析以上述的分析结果为前提,对刀盘进行疲劳寿命分析。着重考察上述分析中的应力较大位置处的疲劳损伤情况。以应力做对称循环,如图16所示。考虑刀盘结构开孔、焊接缺陷、刀盘结构尺寸等对疲劳强度的影响因素,将其以疲劳强度影响因子Kf的形式加以考虑。得到刀盘寿命、损伤以及安全系数和疲劳敏感性曲线。图19 刀盘非恒定载荷谱与古德曼曲线图20 刀盘寿命与损伤图21 刀盘寿命安全系数与双轴指示结果图22 刀盘疲劳敏感性2.4 滚刀破岩机理仿真

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1