ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:1.13MB ,
资源ID:14028554      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14028554.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Sobel边缘检测算子Word格式文档下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Sobel边缘检测算子Word格式文档下载.docx

1、 (a)图像灰度变化 (b)一阶导数 (c)二阶导数 基于一阶导数的边缘检测算子包括Roberts算子、Sobel算子、Prewitt算子等,在算法实现过程中,通过(Roberts算子)或者模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG算子。前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足

2、一定约束条件下推导出的边缘检测最优化算子。1 Roberts(罗伯特)边缘检测算子 景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法是所谓的“梯度检测法”。 设是图像灰度分布函数;是图像边缘的梯度值;是梯度的方向。则有 (1) (n=1,2,.) (2)式(1)与式(2)可以得到图像在(x,y)点处的梯度大小和梯度方向。将式(1)改写为: (3) 称为Roberts边缘检测算子。式中对等的平方根运算使该处理类似于人类视觉系统的发生过程。事实上Roberts边缘检测算子是一种利用局部差分方法寻找边缘的算子,Ro

3、bert梯度算子所采用的是对角方向相邻两像素值之差,所以用差分代替一阶偏导,算子形式可表示如下: (4)上述算子对应的两个模板如图(A)所示。实际应用中,图像中的每个像素点都用这两个模板进行卷积运算,为避免出现负值,在边缘检测时常提取其绝对值。 1 0 -1 (a) (b) 图(A)Robert算子模板2 Sobel(索贝尔)边缘检测算子该算子是由两个卷积核与对原图像进行卷积运算而得到的。其数学表达式为: (5)实际上Sobel边缘算子所采用的算法是先进行加权平均,然后进行微分运算,我们可以用差分代替一阶偏导,算子的计算方法如下: (6)Sobel算子垂直方向和水平方向的模板如图(B)所示,前

4、者可以检测出图像中的水平方向的边缘,后者则可以检测图像中垂直方向的边缘。实际应用中,图像中的每一个像素点都用这两个卷积核进行卷积运算,取其最大值作为输出。运算结果是一幅体现边缘幅度的图像。 -2 2 -3 图(B)Sobel算子模板3 Prewitt(普瑞维特)边缘检测算子Prewitt边缘检测算子就是一种利用局部差分平均方法寻找边缘的算子,它体现了三对像素点像素值之差的平均概念,因为平均能减少或消除噪声,为此我们可以先求平均,再求差分,即利用所谓的平均差分来求梯度。用差分代替一阶偏导可得算子形式如下: (7)Prewitt边缘检测算子的两个模板如图(C)所示,它的使用方法同Sobel算子一样

5、,图像中的每个点都用这两个核进行卷积,取得最大值作为输出。Prewitt算子也产生一幅边缘图像。 图(C)Prewitt算子模板4 Laplacian(拉普拉斯)边缘检测算子 对于阶跃状边缘,其二阶导数在边缘点出现过零交叉,即边缘点两旁的二阶导数取异号,据此可以通过二阶导数来检测边缘点。拉普拉斯边缘检测算子正是对二维函数进行二阶导数运算的标量算子,它的定义是: (8)用差分代替二阶偏导时,与前述三个一阶导数算子不同,拉普拉斯算子的形式可表示如下: (9)拉普拉斯边缘检测算子的模板如图(D)所示,模板的基本特征是中心位置的系数为正,其余位置的系数为负,且模板的系数之和为零。它的使用方法是用图中的

6、两个点阵之一作为卷积核,与原图像进行卷积运算即可。拉普拉斯算子又是一个线性的移不变算子,它的传递函数在频域空间的原点为零,因此,一个经拉普拉斯滤波过的图像具有零平均灰度。拉普拉斯检测模板的特点是各向同性,对孤立点及线端的检测效果好,但边缘方向信息丢失,对噪声敏感,整体检测效果不如梯度算子。因此,它很少直接用于边缘检测。但注意到与Sobel算子相比,对图像进行处理时,拉普拉斯算子能使噪声成分得到加强,对噪声更敏感。 4 8 图(D)Laplace算子模板5 Marr-Hildreth(马尔)边缘检测算子实际应用中,由于噪声的影响,对噪声敏感的边缘检测点检测算法(如拉普拉斯算子法)可能会把噪声当边

7、缘点检测出来,而真正的边缘点会被噪声淹没而未检测出。为此Marr和Hildreth提出了马尔算子,因为是基于高斯算子和拉普拉斯算子的,所以也称高斯-拉普拉斯(Laplacian of Gaussian,LoG)边缘检测算子,简称LoG算子。该方法是先采用高斯算子对原图像进行平滑又降低了噪声,孤立的噪声点和较小的结构组织将被滤除由于平滑会导致边缘的延展,因此在边缘检测时仅考虑那些具有局部最大值的点为边缘点,这一点可以用拉普拉斯算子将边缘点转换成零交叉点,然后通过零交叉点的检测来实现边缘检测。所谓零交叉点就是:如果一个像素处的值小于一,而此像素8-连通的各个像素都是大于 (是一个正数),那么这个像

8、素就是零交叉点。这样还能克服拉普拉斯算子对噪声敏感的缺点,减少了噪声的影响。二维高斯函数为 (10)则连续函数的LoG边缘检测算子定义为 (11) (12)其中是标准差。算子是一个轴对称函数,其横截面如图(E)所示。由于它相当的平滑,能减少噪声的影响,所以当边缘模糊或噪声较大时,利用检测过零点能提供较可靠的边缘位置。 H(x,y) r 0 图(E)H(x,y)的截面图LoG算子在(x,y)空间具有以原点为中心旋转的对称性,LoG滤波器具有如下三个显著特点: 该滤波器中的高斯函数部分对图像具有平滑作用,可有效地消除尺度远小于高斯分布因子的噪声信号。 高斯函数在空域和频域内都具有平滑作用。 该滤波

9、器采用拉普拉斯算子可以减少计算量。 马尔算子用到的卷积模板一般比较大(典型半径为8-32个像素),不过这些模板可以分解为一维卷积来快速计算。常用的LoG算子是模板,如图(F)。与其他边缘检测算子一样,LoG算子也是先对边缘做出假设,然后再这个假设下寻找边缘像素。但LoG算子对边缘的假设条件最少,因此它的应用范围更广。另外,其他边缘检测算子检测得到的边缘时不连续的,不规则的,还需要连接这些边缘,而LoG算子的结果没有这个缺点。对于LoG算子边缘检测的结果可以通过高斯函数标准偏差来进行调整。即值越大,噪声滤波效果越好,但同时也丢失了重要的边缘信息,影响了边缘检测的性能;值越小,又有可能平滑不完全而

10、留有太多的噪声。因此,在不知道物体尺度和位置的情况下,很难准确确定滤波器的值。一般来说,使用大值的滤波器产生鲁棒边缘,小的值的滤波器产生精确定位的边缘,两者结合,能够检测出图像的最佳边缘。数学上以证明,马尔算子是按零交叉检测阶跃状边缘的最佳算子。但在实际图像中要注意到,高斯滤波的零交叉点不一定全部是边缘点,还需要进一步对其真伪进行检验。 -4 -4 24 图(F)LoG算子是模板6 Kirsch(凯西)边缘检测算子 Kirsch边缘检测算子由8个卷积核组成,图像中的每个像素点都用这8个核进行卷积运算,即须求出8个方向的平均差分。像素与不同卷积核卷积运算的结果给出了相应特定边缘方向的响应。从所有

11、方向相应中找出一个最大值,就给出了经过该点的边缘幅度图像的输出值。使输出最大的卷积核的序号既是边缘方向的编码。该算子还可以较好地抑制边缘检测的噪声。假设原始图像的子图像如图(G)所示。 图(G)子图像示意图则边缘的梯度大小为 (13)式中 (14)式(14)中的下标超过7就用8去除并取余数。k=0,1,.,7实际上就是使用了8个模板,8个方向的模板如图(H)所示 5 3 图(H)Kirsch算子的8方向模板从上面的8个方向模板可以看出,每两个卷积核(模板)之间的夹角为45度。对于图像T,模块为(k=1,2,.,8),则边缘强度在点(x,y)处为: k=1,2,.,8 (15)其中,以表示点乘运算。如果取最大值的模作为边缘强度,同时用考虑最大值符号的方法来确定相对应的边缘方向,则考虑到各模板的对称性,只需要前四个模板即可。对于Kirsch算子也有几种不同的形式,如图(I)所示8方向的模板就是一种比较常用的方式。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1