ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:28.79KB ,
资源ID:13982544      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13982544.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(平板探测器知识光电检测Word格式.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

平板探测器知识光电检测Word格式.docx

1、其次TFT或者CCD,或CMOS将可见光转换成电信号。由于在这过程中可见光会发生散射,对空间分辨率产生一定的影响。虽然新工艺中将闪烁体加工成柱状以提高对X线的利用及降低散射,但散射光对空间分辨率的影响不能完全消除。 不同平板探测器的比较评价平板探测器成像质量的性能指标主要有两个:量子探测效率和空间分辨率。DQE决定了平板探测器对不同组织密度差异的分辨能力;而空间分辨率决定了对组织细微结构的分辨能力。考察DQE和空间分辨率可以评估平板探测器的成像能力。(1)影响平板探测器DQE的因素在非晶硅平板探测器中,影响DQE的因素主要有两个方面:闪烁体的涂层和将可见光转换成电信号的晶体管。首先闪烁体涂层的

2、材料和工艺影响了X线转换成可见光的能力,因此对DQE会产生影响。目前常见的闪烁体涂层材料有两种:碘化铯和硫氧化钆。碘化铯将X线转换成可见光的能力比硫氧化钆强但成本比较高;将碘化铯加工成柱状结构,可以进一步提高捕获X线的能力,并减少散射光。使用硫氧化钆做涂层的探测器成像速度快,性能稳定,成本较低,但是转换效率不如碘化铯涂层高。其次将闪烁体产生的可见光转换成电信号的方式也会对DQE产生影响。在碘化铯(或者硫氧化钆)+薄膜晶体管(TFT)这种结构的平板探测器中,由于TFT的阵列可以做成与闪烁体涂层的面积一样大,因此可见光不需要经过透镜折射就可以投射到TFT上,中间没有可以光子损失,因此DQE也比较高

3、;在碘化铯+CCD(或者CMOS)这种结构的平板探测器中,由于CCD(或者CMOS)的面积不能做到与闪烁体涂层一样大,所以需要经过光学系统折射、反射后才能将全部影像投照到CCD(或者CMOS)上,这过程使光子产生了损耗,因此DQE比较低。在非晶硒平板探测器中,X线转换成电信号完全依赖于非晶硒层产生的电子空穴对,DQE的高低取决于非晶硒层产生电荷能力。总的说来,CsI+TFT这种结构的间接转换平板探测器的极限DQE高于a-Se直接转换平板探测器的极限DQE。(2)影响平板探测器空间分辨率的因素在非晶硅平板探测器中,由于可见光的产生,存在散射现象,空间分辨率不仅仅取决于单位面积内薄膜晶体管矩阵大小

4、,而且还取决于对散射光的控制技术。总的说来,间接转换平板探测器的空间分辨率不如直接转换平板探测器的空间分辨率高。在非晶硒平板探测器中,由于没有可见光的产生,不发生散射,空间分辨率取决于单位面积内薄膜晶体管矩阵大小。矩阵越大薄膜晶体管的个数越多,空间分辨率越高,随着工艺的提高可以做到很高的空间分辨率。 量子探测效率与空间分辨率的关系对于同一种平板探测器,在不同的空间分辨率时,其DQE是变化的;极限的DQE高,不等于在任何空间分辨率时DQE都高。DQE的计算公式如下:DQE=S2MFT2/NSPXCS:信号平均强度;MTF:调制传递函数;X:X线曝光强度;NPS:系统噪声功率谱;C:X线量子系数从

5、计算公式中我们可以看到,在不同的MTF值中对应不同的DQE,也就是说在不同的空间分辨率时有不同的DQE。非晶硅平板探测器的极限DQE比较高,但是随着空间分辨率的提高,其DQE下降得较多;而非晶硒平板探测器的极限DQE不如间接转换平板探测器的极限DQE高,但是随着空间分辨率的提高,其DQE下降比较平缓,在高空间分辨率时,DQE反而超过了非晶硅平板探测器。这种特性说明非晶硅平板探测器在区分组织密度差异的能力较强;而非晶硒平板探测器在区分细微结构差异的能力较高。 不同类型的平板探测器在临床上的应用由于DQE影响了图像的对比度,空间分辨率影响图像对细节的分辨能力。在摄片中应根据不同的检查部位来选择不同

6、类型平板探测器的DR。对于象胸部这样的检查,重点在于观察和区分不同组织的密度,因此对密度分辨率的要求比较高。在这种情况下,宜使用非晶硅平板探测器的DR,这样DQE比较高,容易获得较高对比度的图像,更有利于诊断;对于象四肢关节、乳腺这些部位的检查,需要对细节要有较高的显像,对空间分辨率的要求很高,因此宜采用非晶硒平板探测器的DR,以获得高空间分辨率的图像。目前绝大多数厂家的数字乳腺机都采用了非晶硒平板探测器,正是由于乳腺摄片对空间分辨率要求很高,而只有非晶硒平板探测器才可能达到相应的要求。由此可见,不同类型的平板探测器由于材料、结构、工艺的不同而造成DQE和空间分辨率的差异。DQE影响了对组织密

7、度差异的分辨能力;而空间分辨率影响了对细微结构的分辨能力。目前还没有一款DQE和空间分辨率都做得很高的平板探测器,因此需要在两者间做一个平衡。所以在购买和使用DR时,应该根据购买DR的主要用途和具体的检查部位去选择和使用不同类型平板探测器的DR,只有这样才能拍摄出最有利于诊断的图像。量子探测效率在影像学上是探测器(增感屏,胶片,IP,FPD)探测到的光量子与球管发射到探测器上的量子数目比(二)密度分辨率和空间分辨率是决定平板探测器的图像质量的两大重要参数。空间分辨率是指图像每个像素点的大小,这个相信各位都很清楚,平板探测器技术介绍中的像素200m,160m,143m,100m,还有线对数2.5

8、lp/mm,3.1lp/mm,3.6lp/mm,5lp/mm等,分辨率2K*2K,2.6K*2.6K,3K*3K,4K*4K也是空间分辨率的指标,这三个数量间是可以互相换算的,多数厂家在广告宣传的时候一般只注重突出空间分辨率的大小,而忽略了密度分辨率。密度分辨率是指图像上每两个相临像素点的黑白对比关系,此项指标在诊断中有着非常大的意义,尤其是密度变化不大的病变的图像,以正位胸片为例,普通平片上和CR片上都无法看到肺野外带的肺纹理,而高量子探测率的DR片上外带的纹理清晰可见。这也是DR逐步淘汰CR的一个重要原因,同样也是非晶硅平板逐步淘汰CCD、非晶硒以及其他平板的一个重要原因。另外很多人都有一

9、个误区,DR的像素点大小越小,DR的性能就越好,这个误区就是因为不了解密度分辨率造成的,如果单纯的靠像素点大小决定DR的性能,而CR以及CCD DR的像素都超过1000万。从显示角度考虑,人的肉眼是有极限的,达到了一定的分辨率,即使像素点再小,超过一定数量后,对人的观察没有任何影响,另外现在的5M竖屏价格已经非常昂贵了,也可能是我孤陋寡闻,至今尚未听说那个医院应用的是5M以上的竖屏,5M其实就是2K*2.5K的分辨率。因此在选择DR的时候应该综合考虑空间分辨率和密度分辨率。最后再做个广告性质的介绍,前面有帖子中有人说佳能的DR图像较差,分辨率较低,我有点不明白,从空间分辨率角度考虑,为什么不说

10、像素点200m的Revolution平板,而说160m的佳能平板,从密度分辨率角度考虑,佳能平板因为独家应用了X吸收率最高的硫氧化钆做为闪烁体,量子探测率在所有DR中最高,高达66.5%。另外,佳能平板中有款CXDI-31的,像素点大小100m,也是所有DR中空间分辨率最高的,佳能的通用DR平板选择160m的像素大小,并非生产工艺无法做得更小,而是综合考虑生产工艺、空间分辨率、密度分辨率、实际应用等等诸多因素选择的。(三)20世纪70年代兴起的介入放射学(interventional radiology)是在影像监视下对某些疾病进行治疗的新技术,使一些用内科药物治疗或外科手术治疗难以进行或难以

11、奏效的疾病得到有效的医治。纵观30年来介入放射学的应用与发展,可以看出介入放射学在临床工作中的地位明显提高,已成为医院中作用特殊、任务重大、不可或缺的重要临床科室,已成为同内科和外科并列的三大治疗体系之一1。介入医学的发展与影像设备和临床医学密切相关,而影像设备是介入医生的“眼睛”。介入医生所使用的最重要的影像设备是数字减影血管造影(digital subtraction angiogrphy,DSA)系统。本文就目前国内外DSA设备的新技术发展及其应用的新进展,结合大量文献进行综述,重点介绍介入医生密切关注的平板探测器(flat panel detectors,FPD)在DSA设备的应用原理

12、及技术特点,及其在临床医学应用中的技术优势。 1 平板探测器(FPD)在DSA设备的应用原理随着心脑血管疾病和肿瘤发病率的不断提高,介入治疗医生的工作负担逐步加重,而医生在进行介入治疗时必须长时间的接触放射线;治疗技术的发展,如血管支架向小型化的发展,使其在X线下越来越不容易被发现。但随着数字X线成像技术的日臻完善以及计算机技术的发展,FPD应用到最新DSA设备中,有效解决了上述问题。由FPD取代传统的影像增强器(I.I TV)影像链,省去了中间环节(I.I、光学系统、摄像头、模/数转换器)的多次转换,整个过程均在FPD内进行,直接获取数字化图像,避免了传统影像链多个环节传输所造成的失真、噪声

13、及分辨率下降,减少了复杂的外围控制部分,使控制更为直接简单,显示出传统DSA无法比拟的技术优势2。新一代的FPD与影像增强器相比,扩展了数字化采集的能力,在呈现优质临床图像的同时,达到降低X线剂量的效果,提高了对医生和患者的保护。DSA设备中的FPD技术有直接方式与间接方式2种类型:直接方式的检测元件采用光电导材料非晶体硒(a Se)层(非荧光层)加薄膜晶体管(thin film transistor,TFT)阵列构成,它可以将X射线直接转换成电信号、产生数字信号。优点在于检测晶体的厚度较薄,转换速度会较快;缺点在于量子检测效率(DQE)略逊于间接型FPD,并且在应用时外加数千伏的电压,对薄膜

14、晶体开关形成极大的威胁,引起较大的噪声。间接方式则采用碘化铯(CsI荧光体层)与具有光电二极管作用的非晶体硅层加TFT阵列构成。它先将X线转换成可见光,再转换成电信号,从而产生数字信号。优点在于稳定性较好、转化率高;缺点是CsI的制作工艺比非结晶硒均匀层的制作工艺复杂,且需要光敏二极管3。前者的平板探测器空间分辨率优于后者,并且在有临床意义的空间分辨范围下具有更好的量子检出效能特性4。在低曝光剂量条件下,成像质量非晶硅FPD系统优于非晶硒系统;在获得相同的影像质量的前提下,使用前者进行X射线摄影可以降低被检者受照剂量5。两种类型FPD的时间分辨率均可以满足血管造影的需要,达到7.530帧/s的采集。 2 平板探测器的尺寸及生产厂家目前市场上能够提供平板探测器全数字化血管造影系统的厂家有:美国的通用电器(GE)公司,德国西门子(Siemens)公司,荷兰的飞利浦(Philips)公司和日本岛津(Shimadzu)公司。前三者采用了间接型FPD,在中国的装机量约100余台。Shimadzu公司采用自主开发的非晶体硒FPD,具有更高的空间分辨率(像素尺寸150 um,3.3 LP/mm),其开发的RSM DSA可以在患者运动状态下实现清晰的减影采集,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1