ImageVerifierCode 换一换
格式:DOC , 页数:52 ,大小:2.63MB ,
资源ID:13888336      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13888336.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(神经网络在数学建模竞赛中的应用_精品文档Word下载.doc)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

神经网络在数学建模竞赛中的应用_精品文档Word下载.doc

1、(3)非常定性 人工神经网络具有自适应、自组织、自学习能力.神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化.经常采用迭代过程描写动力系统的演化过程.(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数.例如能量函数,它的极值相应于系统比较稳定的状态.非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性.人工神经网络是近年来的热点研究领域,涉及到电子科学技术、信息与通讯工程、计算机科学与技术、电器工程、控制科学与技术等诸多学科,其应用领域包括:建模、时间序列分析、模式识别和控制等,并在不断的拓展.本文

2、正是居于数学建模的神经网路应用.1.2 人工神经网络发展历史 20世纪40年代中期期,在科学发展史上出现了模拟电子计算机和数字电子计算机两种新的计算工具和一种描述神经网络工作的数学模型.由于电子技术(特别是大规模、超大规模集成电路)的发展,使数字电子计算机作为高科技计算工具已发展到当今盛世地步,而人工神经网络模拟仿真生物神经网络的探索则经历了半个世纪的曲折发展道路.1.2.1 兴起阶段1943年心理学家WSMcCulloch和数学家Pitts首先以数理逻辑的方法研究用人工神经网络模拟、仿真和近似生物神经网络的探索,并提出MP神经元模型.1949年D.OHebb从心理学的角度提出了至今仍对神经网

3、络理论有着重要影响的Hebb学习法则.50年代末到60年代初,神经网络系统已开始作为人工智能的一条途径而受到人们的重视.1961年ERosenblatt提出了著名的感知机(Perceptron)模型.这个模型由简单的阀值性神经元构成,初步具备了诸如学习性、并行处理、分布存贮等神经网络的一些基本特征,从而确立了从系统角度进行人工神经网络研究的基础. 1962年Widrow提出了主要适用于自适应系统的自适应线性元件(Adaline)网络.神经网络的研究进入了一个高潮.1.2.2 萧条阶段在整个70年代中,对神经网络理论的研究进展缓慢,原因主要来自于科技界漫不经心的对待和数字计算机飞速发展的冲突,但

4、并没有完全停顿下来.世界上一些对神经网络抱有坚定信心和严肃科学态度的学者们,没有放弃他们的努力.在这期间,Grossberg提出了自适应共振理论(ART);芬兰学者Kohono提出了自组织映射理论(SOM);日本的福岛邦彦提出了认知机(Cognitron)模型,随后又提出了改进至新认知机(Neocognitron)模型;另一位日本学者中野馨提出了联想记忆模型一联想机(Associatron);东京大学的甘利俊一博土则一直致力于数学理论解释神经网络.70年代末期以来,复杂行为系统理论(如耗散结构、协同学、混吨)的出现,人们认识到人工智能、联想记忆学习算法、信息优化组合处理及杉式识别的重要性,极大

5、地推动了人工神经网络的发展.1.2.3 兴盛阶段进入80年代,特别是80年代末期,神经网络的研究从复兴很快转入了新的热网.主要原因来自两个方面:一方面经过十几年迅速发展起来的以逻辑符号处理为主的人工智能理论和Von Neumann计算机在处理诸如视觉、听觉、形象思维、联想记忆等智能信息处理问题上受到了挫折;另一方面,80年代并行分布处理模式的神经网络本身的研究成果,使人们看到了新的希望.这一时期首先要提到的是美国加州理工学院的物理学家Hopfield的开拓性工作.1982年他提出了一个新的神经网络模型Hopfield网络模型,并首次引入了网络能量函数概念,使网络稳定性研究有了明确的判据.尤其是

6、1986年R Mmelhart和McCelland及其研究小组提出的误差逆传播学习算法,成为至今影响最大的一种网络学习方法.到90年代以后,人工神经网络从理论研究到软件开发、软件实现、各个学科领域广泛应用与相互渗透等诸多方面取得了全面的发展.有关神经网络的国际学术组织纷纷成立,学术会议纷纷召开,学术刊物纷纷创刊.神经网络理论已涉及到了神经生理科学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、生物电子学等众多学科,是一门新兴的、综合性的前沿学科.针对不同应用目的的软件开发全面展开,网络计算机的硬件实现方面也取得了一些实实在在的成绩.神经网络的应用,已渗透到模式识别、图像处理

7、、非线性优化、语音处理、自然语言理解、自动目标识别、机器人、专家系统等各个领域,并取得了令人瞩目的成果.总之,以Hopfield教授1982年发表的论文为标志,掀起了神经网络的研究热潮.1987年6月,在美国加州举行了第一届NN国际会议,有一千多名学者参加,并成立了国际NN学会,以后每年召开两次国际联合NN大会(IJCNN),其他国际学术会议也都列有NN主题.较有影响的国际刊物有:IEEE Transaction on Neural Network和Neural Network.美国IBM、AT&T、贝尔实验室、神经计算机公司、各高校、美国政府制定了“神经、信息、行为科学(NIBS)”计划,投

8、资5.5亿美元作为第六代计算机的研究基础;美国科学基金会、海军研究局和空军科学研究部三家投资一千万美元;美国国防部DARPA认为NN“看来是解决机器智能的唯一希望”“这是一项比原子弹工程更重要的计术”投资四亿美元.主要研究目标:目标识别与追踪、连续语音识别,声纳信号辨别.日本的富士通、日本电气、日立、三菱、东芝急起直追.1988年日本提出了所谓的人类尖端科学计划(Human Frontier Science Program),即第六代计算机研究计划.法国提出了“尤里卡”计划,还有德国的“欧洲防御”和前苏联的“高技术发展”等等.我国于1989年在北京召开了一个非正式的NN会议;1990年12月在

9、北京召开了中国NN大会;1991年在南京成立中国NN学会,由国内十五个一级学会共同发起“携手探智能,联盟攻大关”的863高技术研究计划;自然科学基金、国防科技预研究基金也都列入了NN研究内容.1.3 人工神经网络1.3.1 生物神经元模型在人类大脑皮层中大约有100亿个神经元,60万亿个神经突触以及他们的联接体.单个神经元处理一个事件需要秒,而在硅芯片中处理一事件只需秒.但人脑是一个非常高效的结构,大脑中每秒钟每个动作的能量约为焦耳.神经元是基本的信息处理单元.生物神经元主要由树突、轴突和突触组成.其结构示意如如图1-1所示.其中树突是由细胞体向外伸出的,有不规则的表面和许多较短的分支.树突突

10、触树突轴突神经末梢细胞膜细胞质细胞核图1-1 生物神经元模型相当于信号的输入端,用于接收神经冲动.轴突由细胞体向外伸出的最长的一条分支,即神经纤维.相当于信号的输出电缆,其端部的许多神经末梢为信号输出端子,用于传出神经冲动.神经元之间通过轴突(输出)和树突(输入)相互联接,其接口称为突触.每个细胞约有个突触.神经突触是调整神经元之间相互作用的基本结构和功能单元,最通常的一种神经突触是化学神经突触,它将得到的电信号化成化学信号,再将化学信号转化成电信号输出.这相当于双接口设备.它能加强兴奋或抑制作用,但两者不能同时发生.细胞膜内外有电位差,越位,称为膜电位.膜外为正,莫内为负.神经元作为信息处理

11、的基本单元,具有如下重要的功能.1) 可塑性:可塑性反映在新突触的产生和现有的神经突触的调整上,可塑性使适应周围的环境. 2)时空整合功能:时间整合功能表现在不同时间、同一突触上;空间整合功能表现在同一时间、不同突触上.3)兴奋与抑制状态:当传入冲动的时空整合结果,使细胞膜电位升高,超过被称为动作电位的阀值(约为40mv),细胞进入兴奋状态,产生神经冲动,由突触输出;同样,当膜电位低于阀值时,无神经冲动输出,细胞进入抑制状态.4)脉冲与电位转换:沿神经纤维传递的电脉冲为等幅、恒宽、编码的离散脉冲信号,而细胞电位变化为连续信号.在突触接口处进行“数/模”转换.神经元中的轴突非长和窄,具有电阻高、

12、电压大的特性,因此轴突可以建模成阻容传播电路.5)突触的延时和不应期:突触对神经冲动的传递具有延时和不应期,在相邻的二次冲动之间需要一个时间间隔.在此期间对激励不响应,不能传递神经冲动.6)学习、遗忘和疲劳:突触的传递作用有学习、遗忘和疲劳的过程.1.3.2 人工神经网络的模型人工神经网络是由大量处理单元广泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性.一般神经元模型应该具备三个要素:(1)具有一组突触或联接,常用表示神经元和神经元之间的联系强度,或称之为权值.与人脑神经元不同,人工神经元权值的取值可在负值与正值之间.(2)具有反映生物神经元时空整合功能的输入信号累加器.(3)

13、具有激励函数用于限制神经元输出.激励函数将输出信号压缩(限制)在一个允许范围内,使其成为有限值,通常,神经元输出的扩充范围在或闭区间.一个典型的人工神经元模型如图1-2所示.图1-2 人工神经元模型其中为神经元的输入信号,为突触强度或联接权.是由输入信号线性组合后的输出,是神经元的净收入.为神经元的阀值或称为偏差用表示,为经偏差调整后的值,也称为神经元的局部感应区. (1-1) (1-2)是激励函数,是神经元的输出. (1-3) 激励函数可取不同的函数,但常用的基本激励函数有以下三种:(1)阀值函数(Threshold Function) (1-4)该函数通常也称为阶跃函数,常用表示,如图1-3a所示.若激励函数采用阶跃函数,则图1-2所示的人工神经元模型即为著名的MP(McCulloch-Pitts)模型.此时神经元的输出取1或0,反映了神经元的兴奋或抑制.此外,符号函数也常常作为神经元的激励函数,如图1-3b所示.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1