ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:242.06KB ,
资源ID:13837745      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13837745.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(九年级数学培优专题10 最优化Word文档下载推荐.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

九年级数学培优专题10 最优化Word文档下载推荐.docx

1、(全国初中数学联赛试题)解题思路:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值【例2】已知,且,则的最小值为( ) A. B. 3 C. D. 13(太原市竞赛试题)待求式求表示为关于x(或y)的二次函数,用二次函数的性质求出最小值,需注意的是变量x、y的隐含限制【例3】,在的范围内最小值2a,最大值2b,求实数对(a,b).解题思路:本题通过讨论a,b与对称轴的关系得出结论【例4】(1)已知的最大值为a,最小值b,求的值(“数学周报杯”竞赛试题)(2)求使取得最小值的实数的值 (全国初中数学联赛试题)(3)求使取得最小值时x,y的值(“我爱数学”初中

2、生夏令营数学竞赛试题)解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等 【例5】如图,城市A处位于一条铁路线上,而附近的一小镇B需从A市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B修筑一条公路到铁路边,使从A到B的运费最低?(河南省竞赛试题)设铁路与公路的交点为C,ACx千米,BCy千米,ADn千米,BDm千米,又设铁路每千米的运费为a元,则从A到B的运费,通过有理化,将式子整理为关于的方程 【例6】(1)设,(),为kr1个互不相同的正整数,且xrxr1xk2003,求的最大可能值(香

3、港中学竞赛试题)(2)a,b,c为正整数,且,求c的最小值对于(1),因r1,对kr1 k11k个正整数x1,x2,xk,不妨设x1x2xk2013,可见,只有当各项x1,x2,xk的值愈小时,才能使k愈大(项数愈多),通过放缩求k的最大值;对于(2),从入手能力训练 A级1已知三个非负数a,b,c,满足3a2bc5和2ab3c1,若m3ab7c,则m的最小值为_,最大值为 2多项式p2x24xy5y212y13的最小值为 3已知x,y,z为实数,且x2yz6,xy2z3,那么x2y2z2的最小值为 (“希望杯”邀请赛试题)4若实数a,b,c,满足a2b2c29,则代数式(ab)2(bc)2(

4、ca)2的最大值为 ( )5已知两点A(3,2)与B(1,1),点P在y轴上且使PAPB最短,则P的坐标是( ) A.(0,) B.(0,0) C.(0,) D.(0,)(盐城市中考试题)6正实数,满足,那么的最小值为( ) A. B. C. 1 D. E. (黄冈市竞赛试题)7某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).(1)根据图象,求一次函数的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元试用销售单价表示毛利润;试问:销售

5、单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?(南通市中考试题)8方程有一根不大于,另一根不小于,(1)求的取值范围;(2)求方程两根平方和的最大值与最小值(江苏省竞赛试题)9已知实数a,b满足,求的最大值与最小值10.已知a,b,c是正整数,且二次函数的图象与x轴有两个不同的交点A,B,若点A,B到原点的距离都小于1,求abc的最小值(天津市竞赛试题)11某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x天应付的养护与维修费为元(1)如果将设备从开始投入使用到报废所需的养护与维

6、修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y(元)表示为使用天数x(天)的函数(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?(河北省竞赛试题)B级1a,b是正数,并且抛物线和都与x轴有公共点,则的最小值是 2设x,y,z都是实数,且满足xyz1,xyz2,则的最小值为 3如图,B船在A船的西偏北45处,两船相距km,若A船向西航行,B船同时向南航行,且B船的速度为A船速度的2倍,那么A、B两船的最近距离为 km(全国初中数学竞赛试题)4若a,b,c,d是乘积为1的四个正数,则代数式a2b2

7、c2d2abbcacadbdcd的最小值为( ) A. 0 B. 4 C. 8 D. 10 5已知x,y,z为三个非负实数,且满足3x2yz5,xyz2. 若s2xyz,则s的最大值与最小值的和为( ) A. 5 B. C. D. (天津市选拔赛试题)6如果抛物线与x轴的交点为A,B,顶点为C,那么ABC的面积的最小值为( ) A.1 B.2 C.3 D.47某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日

8、销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?(“祖冲之杯”邀请赛试题)8有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p(万元)和q(万元),它们与投入资金x(万元)的关系有经验公式:.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?(绍兴市竞赛试题)9已知为x,y,z为实数,且,试求的最大值与最小值10已知三个整数a,b,c之和为13,且,求a的最大值和最小值,并求出此时相应的b与c值(四川省竞赛试题)11设x1,x2,xn是整数,并且满足: 1xi2,i1,2,n x1x2xn19 x12x22

9、xn299求x13x23xn3的最大值和最小值(国家理科实验班招生试题)12已知x1,x2,x40都是正整数,且x1x2x4058,若x12x22x402的最大值为A,最小值为B,求AB的值例1. 4 提示:原式=.例2.B提示:由-1y1有0x1,则z=2x2+16x+3y2=14x2+4x+3是开口向上,对称轴为的抛物线.例3.分三种情况讨论:0ab,则f(x)在axb上单调递减,f(a)=2b,f(b)=2a,即解得ab0,则f(x)在axb上单调递增,f(a)=2a,f(b)=2b,即此时满足条件的(a,b)不存在.a0b,此时f(x)在x=0处取得最大值,即2b=f(0)=,b=,而

10、f(x)在x=a或x=b处取最小值2a.a0,则2aan,即,故S最小=.例6(1)设x11,x22,xkk,于是1+2+kx1+x2+xk = 2003,即k(k+1)4006,6263=390640064032=6364,k62. 当x1=1,x2=2,x61=61,x62=112时,原等式成立,故k的最大可能值为62.(2)若取,则由小到大考虑b,使为完全平方数.当b=8时,c2=36,则c=6,从而a=28.下表说明c没有比6更小的正整数解.显然,表中c4-x3的值均不是完全平方数,故c的最小值为6.cC4x3(x3c4)C4- x32161,817,83811,8,27,6480,7

11、3,54,1742561,8,27,64,125,216255,248,229,192,131,4056251,8,27,64,125,216,343,512624,617,598,561,500,409,282,113A级1 21 314 提示:y=5x,z=4x,原式=3(x3)2+14 4A提示:原式=27(a+b+c)2 5D 6C 7(1)y=x+1000(500x800) (2)S=(x500)(x+1000)=x2+1500x500000(500x800);S(x750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件 8(1)4m2 (2)设方程两根为x1,x2,则x12+x22=4(m)2+10,由此得x12+x22最小值为10,最大值为101 9设a2ab+b2=k,又a2+ab+b2=1,由得ab= (1k),于是有(a+b)2= (3k)0,k3,从而a+b=故a,b是方程t2t+=0的两实根,由0,得 10设A(x1,0),B(x2,0),其中x1,x2是方程ax2+bx+c=0的两根,则有x1+x2=0,得x10,x20,得b|OA|=|x1|1,|OB|=|x2|1,1x10,1x20,于是=x1x21,c0,a+cb又a,b,c是正整数,有

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1