1、教学建议 本节课力在突出“以学生为主体”的教学理念以问题探究为主要形式,依照学生的认知规律,采用自主学习与合作探究相结合的模式教师在整堂课中引导着学生探索出函数的极值与导数的关系对于检验学生学习的效果,采用问题和练习的形式给予检查和纠正本着“学生是教学活动出发点,也是教学活动的落脚点”的教学思想,在整个教学活动中,不断激发学生的学习兴趣,让学生真正的参与到知识的成长过程主要从以下几个方面对学生进行指导:(1)引导学生观察图象,产生认知冲突极值好像是最值,又不是最值(2)激发探究欲望学生产生疑问之后,指导学生思考怎样解决问题,培养学生的分析和解决问题的能力(3)指导学生合作探究,小组讨论并得出结
2、论教学流程(对应学生用书第58页)课标解读1.理解极值的定义(难点)2掌握利用导数求函数极值的步骤,能熟练地求函数的极值(重点)3会根据函数的极值求参数的值(难点)极值点与极值【问题导思】函数yf(x)的图象如图所示1函数在xa点的函数值与这点附近的函数值有什么大小关系?【提示】函数在点xa的函数值比它在点xa附近的其他点的函数值都小 .2f(a)为多少?在点xa附近,函数的导数的符号有什么规律?【提示】f(a)0,在点xa附近的左侧f(x)0,右侧f(x)0.3函数在xb点处的情况呢?【提示】函数在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0,且在点xb附近的左侧f(
3、x)0,右侧f(x)0.1极小值点与极小值函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,右侧f(x)0.则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值2极大值点与极大值函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0;而且在点xb的左侧f(x)0,右侧f(x)0.则把点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值极大值点、极小值点统称为极值点,极大值和极小值统称为极值函数的极大值一定大于极小值吗?【提示】不一定,极值刻画的是函数的局部性质
4、,反映了函数在某一点附近的大小情况,极大值可能比极小值还小.求函数的极值求下列函数的极值点和极值(1)f(x)x3x23x3;(2)f(x)3ln x.【思路探究】【自主解答】(1)f(x)x22x3.令f(x)0,得x13,x21,如下表所示:x(,1)1(1,3)3(3,)f(x)f(x)极大值极小值6f(x)极大值,f(x)极小值6.(2)函数f(x)3ln x的定义域为(0,),f(x),令f(x)0得x1.当x变化时,f(x),f(x)的变化情况如下表:(0,1)1(1,)极小值3因此当x1时,f(x)有极小值,并且f(1)3.1求函数的极值首先要求函数的定义域,然后求f(x)0的实
5、数根,当实数根较多时,要充分利用表格,使极值点的确定一目了然2函数极值和极值点的求解步骤:确定函数的定义域;求方程f(x)0的根;用方程f(x)0的根顺次将函数的定义域分成若干个小开区间,并列成表格;由f(x)在方程f(x)0的根左右的符号,来判断f(x)在这个根处取极值的情况求函数y2x的极值【解】函数的定义域为(,0)(0,)y2,令y0,得x2.当x变化时,y、y的变化情况如下表:(,2)2(2,0)(0,2)2(2,)yy88由表知:当x2时,y极大值8;当x2时,y极小值8.由函数的极值求参数已知f(x)x3ax2bxc在x1与x时都取得极值,且f(1),求a、b、c的值【思路探究】
6、(1)函数在x1和x时都取得极值,说明f(1)与f()的结果怎样?(2)你能由已知条件列出方程组求解a、b、c吗?【自主解答】f(x)3x22axb,令f(x)0,由题设知x1与x为f(x)0的解解得a,b2.f(x)3x2x2.(,)(,1)f(x)cc由上表知,函数在x1与处取得极值a,b2.f(x)x3x22xc,由f(1)12c,得c1.已知函数的极值情况,逆向应用来确定参数或求解析式时应注意两点:(1)常根据极值点处导数为0和极值两条件列出方程组,用待定系数法求解(2)因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证已知f(x)x33ax2bxa2在x1和x3处有
7、极值,求a、b的值【解】由f(x)x33ax2bxa2,得f(x)3x26axb.又f(x)在x1和x3处有极值,f(1)3b6a0,f(3)2718ab0.联立,得f(x)3x26x93(x1)(x3)当x变化时,f(x)、f(x)的变化情况如下:极大极小f(x)在1,3处取极值,a1,b9符合题意.函数极值的综合应用已知函数f(x)x33ax1(a0)若函数f(x)在x1处取得极值,直线ym与yf(x)的图象有三个不同的交点,求m的取值范围【思路探究】(1)能否由已知条件求出a值,确定f(x)?(2)直线ym与yf(x)的图象有三个不同交点的含义是什么?如何用数形结合求出m的范围?【自主解
8、答】f(x)在x1处取得极值,f(1)3(1)23a0,a1.f(x)x33x1,f(x)3x23,由f(x)0解得x11,x21.当x1时,f(x)0;当1x1时,f(x)0;当x1时,f(x)0.由f(x)的单调性可知,f(x)在x1处取得极大值f(1)1,在x1处取得极小值f(1)3.直线ym与函数yf(x)的图象有三个不同的交点,又f(3)193,f(3)171,结合f(x)的单调性可知,m的取值范围是(3,1)1解答本题的关键是运用数形结合的思想将函数的图象与其极值建立起关系2极值问题的综合应用主要涉及到极值的正用与逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数
9、与方程的思想、分类讨论的思想在解题中的应用在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键已知a为实数,函数f(x)x33xa.(1)求函数f(x)的极值,并画出其图象(草图);(2)当a为何值时,方程f(x)0恰好有两个实数根?【解】(1)由f(x)x33xa,得f(x)3x23,令f(x)0,得x1或x1.(1,1)a2a2由表可知函数f(x)的极小值为f(1)a2;极大值为f(1)a2.由单调性、极值可画出函数f(x)的大致图象,如图所示,这里,极大值a2大于极小值a2.(2)结合图象,当极大值a20时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,
10、即方程f(x)0恰有两个实数根,所以a2满足条件;当极小值a20时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)0恰好有两个实数根,所以a2满足条件综上,当a2时,方程恰有两个实数根(对应学生用书第60页)因未验根而致误已知f(x)x33ax2bxa2在x1时有极值0,求常数a、b的值【错解】因为f(x)在x1时有极值0且f(x)3x26axb,所以即解得或【错因分析】解出a,b值后,未验证x1两侧函数的单调性而导致产生增根致误【防范措施】可导函数在x0处的导数为0是该函数在x0处取得极值的必要不充分条件,而并非充要条件,故由f(x)0而求出的参数需要检验,以免出错【正解】因为f(x)在x1时有极值0,且f(x)3x26axb.即当a1,b3时,f(x)3x26x33(x1)20,所以f(x)在R上为增函数,无极值,故舍去当a2,b9时,f(x)3x212x93(x1)(x3)当x(,3)时,f(x)为增函数;当x(3,1)时,f(x)为减函数;当x(1,)时,f(x)为增函数所以f(x)在x1时取得极小值,因此a2,b9.1极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1