1、标准差即方差的算术平方根方差越大越波动性越强,越不稳定。方差越小,波动性小,越稳定。平均值一样,选方差小的。极差:一组数据的最大值-最小值一元二次方程、二次函数常用结论1.一元二次方程:两个实数根为,有两个不等实数根 ,有两个相等实数根,一元二次方程有实数根,或者说方程有两个实数根,无实数根2. ,顶点坐标为对称轴:3.区别:关于的方程(二次项系数是字母)分类讨论或者已知给出关于一元二次方程或者题目写关于的方程两个实数根如何函数与轴有交点,分类讨论二次函数或说抛物线轴有交点,则轴有两个交点,4.抛物线与轴两个交点距离为:5.对于,则6.若,若7.抛物线存在两个不同的点,且,则抛物线的对称轴为,
2、即坐标系内常用公式(重中之重)1.在平面内,(两点距离公式)线段中点坐标为:2.对于平面内两条直线:, *若3.若必有特殊角初中数学总复习提纲 第一章 实数 重点 实数的有关概念及性质,实数的运算 内容提要 一、 重要概念 1数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准 2非负数:正实数与零的统称。(表为:x0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3倒数: 定义及表示法 性质:A.a1/a(a1);B.1/a中,a0;C.0a1时1/a1;a1时,1/a1;D.积为1。4相反数:A.a0时,a-a;B.a与-a在数轴上的位置;
3、C.和为0,商为-1。5数轴:定义(“三要素”) 作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。6奇数、偶数、质数、合数(正整数自然数) 定义及表示:奇数:2n-1 偶数:2n(n为自然数) 7绝对值:定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。二、 实数的运算 1 运算法则(加、减、乘、除、乘方、开方) 2 运算定律(五个加法乘法交换律、结合律;乘法对加法的 分配律) 3 运算
4、顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5 5);C.(有括号时)由“小”到“中”到“大”。三、 应用举例(略) 附:典型例题 1 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b =b-a. 2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。第二章 代数式 重点代数式的有关概念及性质,代数式的运算 分类:1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。整式和分式统称为有理式。2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。没有除法运算或虽有除法运算但除式中不含有字
5、母的有理式叫做整式。有除法运算并且除式中含有字母的有理式叫做分式。3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x, =x等。4.系数与指数 区别与联系:从位置上看;从表示的意义上看 5.同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫
6、做无理式。注意:从外形上判断;区别: 、 是根式,但不是无理式(是无理数)。7.算术平方根 正数a的正的平方根( a0与“平方根”的区别);算术平方根与绝对值 联系:都是非负数, =a a中,a为一切实数; 中,a为非负数。8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。9.指数 ( 幂,乘方运算) a0时, 0;a0时, 0(n是偶数), 0(n是奇数) 零指数: =1(a0) 负整指数: =1/ (a0,p是正整数)
7、二、 运算定律、性质、法则 1分式的加、减、乘、除、乘方、开方法则 2分式的性质 基本性质: = (m0) 符号法则:繁分式:定义;化简方法(两种) 3整式运算法则(去括号、添括号法则) 4幂的运算性质: = ; = ; = ; 技巧:5乘法法则:单单;单多;多多。6乘法公式:(正、逆用) (a+b)(a-b)= (ab) = 7除法法则:单多单。8因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。9算术根的性质: ; ; (a0,b0); (a0,b0)(正用、逆用) 10根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A
8、. ;B. ;C. . 11科学记数法: (1a10,n是整数 四、 数式综合运算(略) 第三章 统计初步 重点 内容提要 1.总体:考察对象的全体。2.个体:总体中每一个考察对象。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。5.众数:一组数据中,出现次数最多的数据。6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数: ;若 , , ,则 (a常数, , , 接近较整的常数a);加权平均数:平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确
9、。2样本方差:若 , , ,则 (a接近 、 、 的平均数的较“整”的常数);若 、 、 较“小”较“整”,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。3样本标准差:第四章 直线形 重点相交线与平行线、三角形、四边形的有关概念、判定、性质。一、 直线、相交线、平行线 1线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。2线段的中点及表示 3直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4两点间的距离(三个距离:点-点;
10、点-线;线-线) 5角(平角、周角、直角、锐角、钝角) 6互为余角、互为补角及表示方法 7角的平分线及其表示 8垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9对顶角及性质 10平行线及判定与性质(互逆)(二者的区别与联系) 11常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。12定义、命题、命题的组成 13公理、定理 14逆命题 二、 三角形 按边分;按角分 1定义(包括内、外角) 2三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3三
11、角形的主要线段 讨论:定义线的交点三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形 4特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特殊三角形全等的判定:一般方法专用方法 6三角形的面积 一般计算公式性质:等底等高的三角形面积相等。7重要辅助线 中点配中点构成中位线;加倍中线;添加辅助平行线 8证明方法 直接证法:综合法、分析法 间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 三、 四边形 分类表:1一般性质(角) 内角和:360顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:2特殊四边形 研究它们的一般方法:平行四边形、矩形、菱形、正方形;梯形、等
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1