ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:263.22KB ,
资源ID:13593480      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13593480.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学专题复习 数列教案 文Word文档格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高考数学专题复习 数列教案 文Word文档格式.docx

1、例1.(1)在等差数列 an 中,a1a230,a3a4120,则a5a6 .说明:这是一道典型的运用基本量思想求数列和的问题,根据a1a230,a3a4120,可以列出关于的方程两个二元一次方程方程,通过加减消元或带入消元接出的值;同时注意到个方程数列项下标特征,根据等差数列的性质,得到a5a6=210.变式:(2010全国卷理科数学4)已知各项均为正数的等比数列中, =5, =10,则表面看这是一道可以用基本量思想解决的问题,但在实际操作过程中发现,使用基本量列出方程组计算量较大,要得到结果还需借助指数幂的运算性质,易出错.如果仔细观察已知条件与所求结论的关系,不难发现,运用等比数列的性质

2、可以很快得到选择恰当的方法有时可以大大简化我们的计算,为考试赢得宝贵的时间,而恰当方法的选择,借助于我们认真审题和知识的融会贯通.(2)等差数列中,且成等比数列,求数列前20项的和这也是一道典型的运用基本量思想求数列和的问题,同时也是一道简单地将等差数列和等比数列组合在一起的问题,通过和成等比数列可以直接列出两个关于基本量的方程组:,此方程组是由一个二元一次与一个二元二次方程组合而成,宜采先化简再带入消元法的方法求解,第二个方程可化简为,学生特别容易将d直接消去,导致漏解的错误.最终结果=200或330.此种题型方法常规,思路明确,计算量适中,常常出现在填空题的前六题或解答题的前两题,属容易题

3、.例2. 已知数列an的通项公式an=9-2n,则| a1|+| a2|+| a20|= 这是一道利用等差数列基本量求分段数列和的问题.关键是引导学生正确写出分段数列的通项公式,分段的依据是|9-2n|=0,利用分段通项公式分段求和得|a1|+|a2|+|a20|=.此题不仅考察学生的基本运算能力,也考察了学生分段函数、含绝对值表达式的处理方法.例3.(2010浙江理科数学卷15)设为实数,首项为,公差为d的等差数列的前n项和为,满足+15=0,则d的取值范围是_.直接运用基本量列出关于方程,在列式时注意等差数列求和公式的选择,由于此题中涉及的两个基本量是,所以可以选择用表示的求和公式,从而化

4、简得,结合二次函数方程有解判别式大于等于零的性质,得这是一道将数列基本量思想与二次方程知识有机结合的问题,不仅考查学生的计算能力,同时还考查了知识的迁移与转化能力.基本策略:等差、等比数列是两类最基本的数列,它们的通项公式、前n项和的公式中均含有两个基本量,因此数通过基本量思想求解等差等比的通项和前n项和是高考考查的重点也是热点.在运用基本量思想解决问题时,要注意以下两个方面:1、基本两思想在解决问题时比较程序化,认真审题选择恰当的方法是关键,有两个性质有时可以简化我们的计算(在等差数列中,若则在等比数列中若则);2、在计算过程中注意观察表达式的特征,灵活地运用计算方法在等差数列求和的问题中,

5、首先是确定通项,选择恰当的求和公式,在等比数列求和中要注意q =1的情况单独讨论.基本题型二:递推数列的求项求和问题例4. 设数列a n的前n项和为S n,已知an=5S n3 (nN),求a 1+a 3+a 2 n1的值在表达式中同时出现an和S n时,我们通常采用的方法是运用公式,将表达式转化为都关于an或S n的式子,然后再进行求解.因此,此题表达式可变形为,即,所以为等比数列,求和问题迎刃而解.例5.(2010新课标全国理科卷17)设数列满足,.(1)求数列的通项公式;(2)令,求数列的前n项和.此题为解答题的第一题,是一道典型的运用递推数列性质求项求和的问题,第一问用到我们熟知的累加

6、法求通项,即;第二问中,则采用分组求和的方法求和,在分组求和中的第一个分组则采用错位相减法求和,此题主要考察学生对基本方法的熟悉程度.使用累加法求通项的递推形式为,使用累乘法求通项的递推形式为,使用错位相减法求和的通项公式为.例6. 设数列an满足a11,an12an1(nN),则数列的通项为_.这个递推通项满足的递推形式,通常可以采用待定系数法构造新数列,如等式两边同时加上1得到an1+12(an1),新数列an1为首相为2,公比为2的等比数列,从而得到数列an1的通项公式,自然得到数列an的通项.这种递推形式是较为常见的递推形式.但作为一道数列填空题,我们有时也可采用特殊值法进行简单的推导

7、得到通项,如此题通过递推公式很快可以得到a23,a37,a431,因此,我们可以猜想an,再代入验证.这种由特殊到一般的推理方法对于数列的填空题有时也很奏效.*例7.(2007全国数学文科19)在数列中,()设证明:数列是等差数列;()求数列的前项和这也是一道典型的运用递推数列性质求项求和的问题,递推公式往往形式多样,而通过适当地变形转会为等差等比数列是常用的一个手段,直接转化难度较大,而第一问中的给了我们一些暗示,是否两边同时除以就可以构造成一个新的等差数列呢?通过猜想、探索很快验证了我们的想法是正确的.通常我们遇到的运用构造新数列方法求递推数列的通项还有其它形式,如(可采用两边同除以构造为

8、等差数列),(可使用待定系数法变形为的形式,构造为等比数列),(两边同除以后再使用待定系数法构造为等比数列)在第二问中,则出现了使用错位相减法求和的常见模型.一般数列的求项求和问题大多以递推通项为背景,通过常见的公式、累加、累乘、构造等方法对递推公式进行变形,最终转化为我们熟知的等差、等比数列的定义式进行求解,有时候在构造过程中我们会用到多种构造方法,但最值的目的还是将未知的数列转化为我们已知的数列进行求解.对于理科的学生可以通过列举前几项,猜想通项公式,运用数学归纳法证明的方式求解通项.求递推数列通项是数学中化归思想的重要体现,对学生的能力要求较高,是历年高考中的热点与难点.复习时建议不同层

9、次的学校根据学生特点进行复习,几种基本的递推模型人人掌握,对于变形巧妙,难度较大的问题,讲解时可预设台阶或视学生情况选讲.基本题型三:数列与不等式、函数与方程等知识的综合问题例8. 数列是等比数列,8,设(),如果数列的前7项和是它的前n项和组成的数列的最大值,且,求的公比q的取值范围这是一道较为简单的数列与函数、不等式结合的问题,解题步骤如下:因为为等比数列,设公比为q,由则,为首项是3,公差为的等差数列;由最大,且 且 即从解题的过程可以看出此题运用到对数运算性质、简单对数不等式的解法,数列在题中作为问题的载体,仅用到基本的等差等比通项知识.例9.已知数列an满足,an+1an4n3(nN

10、*)(1)若数列an是等差数列,求a1的值;(2)当a12时,求数列an的前n项和Sn;(3)若对任意nN*,都有4成立,求a1的取值范围这是南京市2011届高三学情分析考试中的压轴题,题目涵盖了数列中的常见思想方法,如第一问运用基本量思想,第二问题分奇偶化归为等差数列求和,第三问是与不等式、函数相结合的恒成立问题.较为全面地考察了学生分析解决问题的能力.在第二问中,分奇偶讨论通项是求和的前提,而为什么要分奇偶讨论通项是学生理解的一个难点,由已知an1an4n3(nN*),得an2an14n1(nN*),两式相减,得an2an4,这个表达式是数列的隔项递推公式,也就说明此数列隔一项具备等差数列

11、的形式,那数列中隔项项的下标特点即是奇偶分类,因此,想到分奇偶讨论通项就理所当然.而有些学生可能避开分奇偶讨论通项而直接求和也是很好的,因为已知an1an4n3(nN*),这个表达式传递给我们连续两项的和组成一个新的数列,而这个数列是我们熟知的等差数列这一信息,求和非常方便,但在计算的过程中很容易发现求和时项数还是要分奇偶讨论.当n为奇数时, Sna1a2a3an(a1a2)(a3a4)(an2an1)an19(4n11)2n2n(在组合过程中将单独提出可能更为简单,不需要求解通项)当n为偶数时,Sna1a2a3an(a1a2)(a3a4)(an1an)19(4n7)第三问是不等式的恒成立问题

12、,由第二问的提示,处理第三问的前提是找到数列的通项,即an当n为奇数时,4即为2a122a158n228n12,令f (n)8n228n128(n)2,当n1时,f (n)max8,所以2a122a158,解得a1或a1.当n为偶数时,an2na13,an12na1,4即为2a126a198n228n12,当n2时,f (n)max12,所以2a126a1912,解得a1或a13综上,a1的取值范围是a1或a13 *例10(2008陕西卷理科数学22)已知数列的首项,()求的通项公式;()证明:对任意的,;()证明:这是一道高考压轴题,虽然难度大,但第一问还是常规递推数列求通项问题,寻找正确的

13、数列通项公式是解决此类问题的前提,这个表达式可以两边直接取倒数,变形为的形式,而这种形式正是我们前面提及的形式,可使用待定系数法变形为的形式,构造为等比数列的形式,从而求得.此种构造法属二次变形构造,第一次先变形为我们熟知的可以使用构造法解决通项的数列递推形式,第二次则变形为我们熟知的等差等比数列模型求解通项,属于难度较大的递推数列求通项问题.后两问是数列与函数、不等式的证明融合一体的综合问题.从第二问的提法中我们可以感知这是个函数与数列结合的恒成立问题,对于不等式的右边进行变形,分离变量求最值是我们通常的手段,但在变形过程中我们发现无法将n与x分离,而不等式右边含有n的表达式与又有着密切的关系,自然想到如下变形方式:, 由于则原命题成立.在此问中,既然涉及到函数求最值的问题,我们也可以直接将不等式右边看做关于x的一个函数,对其进行求导求最值.第三问是数列求和与不等式证明相结合的问题,通常处理方法有以下两种:(1)能直接求和的先直接求和,将所求和的表达式与要证明的式子进行做差或对比证明;(2)将求和的数列通项进行有效放缩,使之变为能够求和的通项进行求和. 本题显然不适用(1),因为的通项不宜直接求和,因此放缩通项使我们的首选,而放缩的形式非常丰富,如,很好的一个放缩形式,求和也十分方便,但是整理后得,这比我们所要求的结果略小,说明放

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1