1、 , ,它们也叫互为有理化因式.9最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式, 被开方数的因数是整数,因式是整式, 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12二次根式的混合运算:(1)二次根式的混合运算
2、包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第二章 一元二次方程1. 认识一元二次方程:概念:只含有一个未知数,并且可以化为 (为常数,)的整式方程叫一元二次方程。构成一元二次方程的三个重要条件:、方程必须是整式方程(分母不含未知数的方程)。如:是分式方程,所以不是一元二次方程。、只含有一个未知数。、未知数的最高次数是2次。2. 一元二次方程的一般形式:一般形式: (),系数中,
3、一定不能为0,、则可以为0,所以以下几种情形都是一元二次方程:、如果,则得,例如:;、如果,则得,例如:、如果,则得,例如:、如果,则得,例如:。其中,叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数;叫做常数项。任何一个一元二次方程经过整理(去括号、移项、合并同类项)都可以化为一般形式。 一元二次方程的解法:(1)、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解) 形式:(2)、配方法:(理论依据:根据完全平方公式:,将原方程配成的形式,再用直接开方法求解.) (3)、公式法:(求根公式:) (4)、分解因式法:,则或;利用提公因式、运用 公式、十字相乘等分解因式方法将原方
4、程化成两个因式相乘等于0的形式。)3、韦达定理:若一元二次方程 (),则,4、一元二次方程的应用第3章 频数分布及其图形1、 频数及频率的概念(1) 频数:一组数据中,每个数据出现的次数叫做该数据的频数。 (2) 频率:一组数据中每个数据出现的次数与总次数的比值叫做频率。2、 极差:一组数据的最大值与最小值的差叫做极差。3、 频数分布表的绘制步骤;(1) 确定最大值和最小值。(2) 确定组数和组界(3) 划记(4) 绘制频数分布表4、 频数分布直方图(1) 频数分布直方图的组成:横轴;纵轴;条形图。(2) 频数分布直方图的绘制:列出频数分布表画出频数分布直方图。5、 频数分布折线图顺次连结频数
5、分布直方图是每个长方形上面一条边的中点,就得到所求的频数分布折线图。第四章 平行四边形1正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法(2)表示方法:用“ ”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”2熟练掌握性质平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的 对角线互相平分;(4)面积:; 平行四边形的对角线将四边形
6、分成4个面积相等的三角形3平行四边形的判别方法定义:两组对边分别平行的四边形是平行四边形 方法1:两组对角分别相等的四边形是平行四边形方法2:两组对边分别相等的四边形是平行四边形 方法3:对角线互相平分的四边形是平行四边形方法4:一组平行且相等的四边形是平行四边形第五章 特殊的平行四边形1.几种特殊的平行四边形(1)矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形性质:边:对边平行且相等; 角:对角相等、邻角互补;对角线:对角线互相平分且相等; 对称性:轴对称图形(对边中点连线所在直线,2条)(2)菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)四条边都相等;对
7、角线互相垂直平分且每条对角线平分每组对角;对称性:轴对称图形(对角线所在直线,2条)(3)正方形:四条边都相等,四个角都是直角的四边形是正方形。四角相等;对角线互相垂直平分且相等,对角线与边的夹角为450;轴对称图形(4条)2几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形有一个角是直角的平行四边形; 对角线相等的平行四边形; 四个角都相等(2)菱形的判定:有一组邻边相等的平行四边形; 对角线互相垂直的平行四边形; 四条边都相等(3)正方形的判定:满足下列条件之一的四边形是正方形有一组邻边相等 且有一个直角 的平行四边形有一组邻边相等 的矩形; 对角线互相垂直 的矩形
8、有一个角是直角 的菱形 对角线相等 的菱形;3几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等说明四边形ABCD的三个角是直角(2)识别菱形的常用方法先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等先说明四边形ABCD为平行四边形,再说明对角线互相垂直说明四边形ABCD的四条相等(3)识别正方形的常用方法先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等先说明四边形AB
9、CD为平行四边形,再说明对角线互相垂直且相等先说明四边形ABCD为矩形,再说明矩形的一组邻边相等先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角第六章 反比例函数 (1)反比例函数如果(k是常数,k0),那么y叫做x的反比例函数(2)反比例函数的图象反比例函数的图象是双曲线(3)反比例函数的性质当k0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小当k0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大反比例函数图象关于直线yx对称,关于原点对称(4)k的两种求法若点(x0,y0)在双曲线上,则kx0y0k的几何意义:若双曲线上任一
10、点A(x,y),ABx轴于B,则SAOB(5)正比例函数和反比例函数的交点问题若正比例函数yk1x(k10),反比例函数,则当k1k20时,两函数图象无交点;当k1k20时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称(6)对于双曲线上的点A、B,有两种三角形的面积(SAOB)要会求(会表示),如图71所示小学二(2)班班规一、 安全方面1、 每天课间不能追逐打闹。2、 中午和下午放学要结伴回家。3、公路上走路要沿右边走,过马路要注意交通安全。4、不能在上学路上玩耍、逗留。二、学习方面1、每天到校后,不允许在走廊玩耍打闹,要进教室读书。2、每节课
11、铃声一响,要快速坐好,安静地等老师来上课。3、课堂上不做小动作,不与同桌说悄悄话, 认真思考,积极回答问题。4、养成学前预习、学后复习的好习惯。每天按时完成作业,保证字迹工整,卷面整洁。5、考试时做到认真审题,不交头接耳,不抄袭,独立完成答卷。三、升旗排队和两操方面1、升旗时,要快速出教室排好队,做到快、静、齐,安静整齐地排队走出课室门,班长负责监督。2、上午第二节后,快速坐好,按要求做好眼保健操。3、下午预备铃声一响,在座位上做眼保健操。四、卫生方面1、每组值日生早晨7:35到校做值日。2、要求各负其责,打扫要迅速彻底,打扫完毕劳动工具要摆放整齐。3、卫生监督员(剑锋,锶妍,炜薪)要按时到岗
12、,除负责自己的值日工作外,还要做好记录。五、 一日常规1、每天学生到齐后,班长要检查红领巾。2、劳动委员组织检查卫生。3、 每天负责领读的学生要督促学生学习。4、 上课前需唱一首歌,由文娱委员负责。5、做好两操。6、放学后,先做作业,然后帮助家长至少做一件家务事。7、如果有人违反班规,要到老师处说明原因。班训:坐如钟 站如松 快如风 静无声班规:课堂听讲坐如钟,精神集中认真听;排队升旗站如松,做操到位展雄风;做事迅速快如风,样样事情记得清;自习课上静无声,踏实学习不放松;个人努力进步快,团结向上集体荣;我为领巾添光彩,标兵集体记我功。加分标准序号考核项目加分值备注1单元考试满分+22单元考试85分以上+13课堂小测满分4期中、期末考试满分+35在红领巾广播站投稿一次6在校级活动中获奖+57作业十次全对得一颗星8课堂上得到表扬9班干部工作认真负责10做好事、有利于班集体和学校的事11进步比较明显12连续一周该组值日卫生达标本组值日生每人加2分扣分标准扣分值没交作业、不做晚作业-1忘带书本、学具迟到在课堂上被老师点名-2不穿校服,不戴红领巾吃零食、带钱、带玩具说脏话、打架-3请家长,写保证书座位周围有垃圾课间操、眼保健操不认真做升旗时违反纪律来
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1