ImageVerifierCode 换一换
格式:PPTX , 页数:59 ,大小:11.09MB ,
资源ID:13499918      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13499918.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(5G移动通信关键技术PPT格式课件下载.pptx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

5G移动通信关键技术PPT格式课件下载.pptx

1、,5G通信性能的提升不是单靠一种技术,需要多种技术相互配合共同实现。,12/59,5G关键传输技术,5G新型网络架构,5G发展需求与挑战,相关研究基础,提纲,13/59,关键传输技术总览,频谱拓展技术,频效提升技术,能效提升技术,覆盖增强技术,多址技术、用户调度、资源分配、用户/网络协作,超密异构组网D2D、M2M,大规模天线、FBMC、空间调制,认知无线电、毫米波、可见光,绿色通信干扰管理,增加覆盖,增加信道,增加带宽,增加SINR,14/59,关键传输技术(1)认知无线电,2014年7月,国家无线电监测中心和全球移动通信系统协会发布450MHz-5GHz关注频段频谱资源评估报告,给出了北京

2、、成都和深圳等城市部分无线电频谱占用统计数字。,统计结果表明,5GHz以下所关注频段大部分的使用率远远小于10%,说明5GHz以下频段使用效率有大量的提升空间。为了提高频谱利用率,未来5G需要采用认知无线电技术,认知无线电提高已分配频谱的利用效率,15/59,关键传输技术(2)频谱拓展技术,0,3GHz,6GHz,60GHz,2G/3G/4G re-farming,WRC-15 AI 1.2 candidate bands below 6GHz,Potential bands above 6GHz for 2020s,WRC-15 AI 1.2,(6GHz)频谱分配原则优先保障移动通信的频谱资

3、源技术上可以实现连续500MHz带宽可用能与其他系统共存,16/59,关键传输技术(2)频谱拓展技术,高频段带宽资源尚待开发 60GHz频段毫米波(mmWave,30300 GHz,110 mm,广义毫米波包含2030 GHz),10400 GHz频段大气衰减,卫星,军事,毫米波通信开发高频段,毫米波可用于室内短距离通信,也可为5G移动通信系统提供Backhaul链路,17/59,关键传输技术(2)频谱拓展技术,毫米波通信技术目前已经实现10Gbps的传输速率据预测,未来毫米波通信速率可快于光纤速率(faster than fiber),J.Wells,Faster than fiber:Th

4、e future of multi-G/s wireless,IEEE Microwave Magazine,vol.10,pp.104-112,2009.,40GHz以上频段分配的商用带宽达几十GHz。,商用带宽分配,40GHz以下比较窄,要实现更高的传输速率,需要更高的载波频谱10GHz以下频段,仅能达到几十Mbps10-40GHz频段,仅能达到几百Mbps60-80GHz频段,可达1Gbps100GHz以上,可达10Gbps,毫米波通信开发高频段,18/59,可见光通信(Visual light communication:VLC),关键传输技术(2)频谱拓展技术,可见光频谱带宽是无线电

5、频谱带宽的万倍,380 nm,780nm,可见光通信在5G中可用于室内短距离通信、车联网通信、水下通信等,19/59,关键传输技术(2)频谱拓展技术,已有研究表明,光attocell的谱效比射频Femtocell的谱效最高提升近3个数量级,H.Haas,High-speed wireless networking using visible light,SPIE Newsroom,2013.,可见光通信可显著改善室内通信传输速率,Attocell和Femtocell的单位面积频谱效率(ASE)比值,测试条件:3层办公楼被7个LTE宏基站包围,楼层间损耗FL=17dB,内墙损耗为12dB,外墙损

6、耗为20dB.红色小点表示Attocell的可见光基站,绿色菱形表示Femtocell的射频基站。,可见光通信(Visual Light Communication:VLC),20/59,关键传输技术(3)大规模天线技术,4G:3GPP LTE-A标准,4G:3GPP LTE标准,5G,3G:WCDMA HSPA+标准,大规模天线:基站使用大规模天线阵列(几十甚至上百根天线),支持SISO,22MIMO,44MIMO。下行峰值速率100Mb/s。,支持22MIMO,下行峰值速率42Mb/s,最多支持88MIMO,下行峰值速率1Gb/s,3G:WCDMA HSPA标准,只能使用SISO,下行峰值

7、速率7.2Mb/s,MIMO技术的演进,21/59,关键传输技术(3)大规模天线技术,何为大规模天线:大量天线为相对少的用户提供同传服务,系统容量,10倍,100倍,能量效率,发射能量,1,*为基站天线数目,大规模天线有效提高谱效率,大规模天线被公认为5G关键技术之一,22/59,关键传输技术(3)大规模天线技术,大规模天线应用场景:中心式天线系统适用于宏蜂窝小区,中心基站使用大规模天线微小区为大部分用户提供服务,而大规模天线基站为微小区范围外的用户提供服务,同时对微小区进行控制和调度(demo:NTT docomo),23/59,关键传输技术(3)大规模天线技术,大规模天线应用场景:分布式天

8、线系统多根天线分布在区域内联合处理(C-RAN)适用于高用户密度或者室内场景,24/59,关键传输技术(4)新型传输波形技术,OFDM传输波形技术OFDM是当前Wi-Fi和LTE标准中的高速无线通信的主要传信模式,OFDM是未来5G的关键传输波形技术,其性能仍有提升空间,Channel(),Noise,Transmitter,Receiver,25/59,关键传输技术(4)新型传输波形技术,新型传输波形技术滤波器组多载波(Filterbank multicarrier:FBMC),Channel(),Noise,Transmitter,Receiver,用滤波器组替代CP对载波频偏不敏感提高了

9、频效和能效,传统OFDM功率谱,FBMC功率谱,除了FBMC外,还有多种波形改进技术,如time-Frequency Packing,sparse code multiple access,generalized frequency division multiplexing等各种改进的传输波形技术为5G性能提升提供多样选择,G.Wunder,P.Jung,M.Kasparick,T.Wild,F.Schaich,C.Yejian,et al.,5GNOW:non-orthogonal,asynchronous waveforms for future mobile applications,

10、IEEE Communications Magazine,vol.52,pp.97-105,2014.V.Vakilian,T.Wild,F.Schaich,S.ten Brink,and J.F.Frigon,Universal-filtered multi-carrier technique for wireless systems beyond LTE,in proc.IEEE Globecom Workshops,2013,pp.223-228.,26/59,关键传输技术(5)非正交多址接入技术,1G,2G,3G,4G,正交多址接入技术已有通信标准都采用正交接入技术,27/59,关键传

11、输技术(5)非正交多址接入技术,1G,2G,3G,4G,正交多址接入技术已有通信标准都采用正交接入技术,SNR1=20dB(强用户),SNR2=0dB(弱用户)正交接入方案一般来说是次优的,仅在C点达到和容量最大,但是在该点,用户2(弱用户)获得的速率很小,因此对弱用户而言不公平。,最优容量区域,正交方案可达速率区域,利用正交多址无法保证容量最优和用户公平,28/59,复杂度(Complexity),容量(Capacity),关键传输技术(5)非正交多址接入技术,非正交多址接入(Non-orthogonal Multiple Access:NOMA),29/59,关键传输技术(6)先进编码与调

12、制技术,编码调制技术的演进,30/59,4发射天线QPSK空间调制星座图,关键传输技术(6)先进编码与调制技术,空间调制(Spatial Modulation:SM),以天线的物理位置来携带部分发送信息比特,将传统二维映射扩至三维映射,提高频谱效率。每时隙只有一根发射天线处于工作状态,避免了信道间干扰与天线同步发射问题,且系统仅需一条射频链路,有效地降低了成本。,31/59,根据信息论,非高斯干扰可实现更高传输速率,关键传输技术(6)先进编码与调制技术,频率正交幅度调制(Frequency Quadrature-amplitude Modulation:FQAM),将频移键控(FSK)与正交幅度调制(QAM)相结合,提高频谱效率。用于多小区下行链路中,能够提高小区边缘用户的通信质量。,32/59,1 国家电网公司“两会”工作报告摘要,2010年2 全力构建绿色网络,中国移动通信研究院,2010年11月3 Study on Energy Efficient Radio Access Network(EERAN)Technologies,TU Dresden and Vodafone,20094 New Generation Node B,华为,2010,2009年,三大运营商的能耗总量折合为440.7万吨标准煤,其中80%以上是电力消耗,达到290

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1