1、点在直线上,或者说直线经过这个点。点在直线外,或者说直线不经过这个点。6、直线的性质(1)直线公理:经过两个点有且只有一条直线。(或者说两点确定一条直线。)(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。7、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的中点到两端点的距离相等。(4)线段的大小关系和它们的长度的大小关系是一致的。8、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫
2、做线段AB的中点。9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。11、角的表示角的表示方法有以下四种:用数字表示单独的角,如1,2,3等。用小写的希腊字母表示单独的一个角,如,等。用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如B,C等。用三个大写英文字母表示任一个角,如BAD,BAE,CAE等。注意:用三个大写英文字母表示角
3、时,一定要把顶点字母写在中间,边上的字母写在两侧。12、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“”表示,1度记作“1”,n度记作“n”。把1的角60等分,每一份叫做1分的角,1分记作“1”。把1 的角60等分,每一份叫做1秒的角,1秒记作“1”。1=60,1=60”13、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。14、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。相交线与平行线专题总结1.邻补角:两条直线相交所构成的四
4、个角中,有公共顶点且有一条公共边的两个角是邻补角。2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3.对顶角和邻补角的关系角的名称特征性质相同点不同点对顶角两条直线相交面成的角有一个公共顶点没有公共边对顶角相等都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。邻补角有一条公共边邻补角互补4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。6.
5、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。8.同位角、内错角、同旁内角:9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。10.平行线:在同一平面内,不相交的两条直线叫做平行线。11.命题:判断一件事情的语句叫命题。12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。13
6、.假命题:条件和结果相矛盾的命题是假命题。14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。16.定理与性质对顶角的性质:对顶角相等。17.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。19.平行线的性质:两直线平行,同位角相等。两直线平行
7、,内错角相等。性质3:两直线平行,同旁内角互补。20.平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。用尺规作角作法1)作射线OA(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O为圆心,以OC长为半径画弧,交OA于点C(4)以点C为圆心,以CD长为半径画弧,交前面的弧于点D(5)过点D作射线OB。AB就是所求作的角数据的收集整理与描述 基础知识梳理一、统计调查(一)全面调查1.数据处理的基本过程收集数据、整理数据、描述数据、分析数据、得出结论2、统计调查的方式及其优点 (1)全面调查:我们把对全体对
8、象的调查称为全面调查.(2)百分比:每个对象出现的次数与总次数的比值。 调查方式有两种:一种是全面调查,另一种是抽样调查。 百分比之和为1。全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。3.表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.4.常见统计图1)条形统计图:能清楚地表示出每个项目的具体数目;2)扇形统计图: 能清楚地表示出各部分与总量间的比重;3)折线统计图: 能反映事物变化的规律.5.扇形统计图(1)扇形统计图:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大
9、小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图。(2)制作扇形统计图的三个步骤:计算各部分在总体中所占的百分比;2计算各个扇形的圆心角的度数360该部分占总体的百分比;3在圆中依次作出上面的扇形,并标出百分比。(3)扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大。扇形的面积越小,圆心角的度数越小。(二)抽样调查1从总体中抽取部分对象进行的调查叫抽样调查.特点:抽样调查只考察总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。2在统计中,需要考察对象的全
10、体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。3.抽样的必要性:总体中的个体数目较多,工作量较(太)大,无法一一考查;受客观条件的限制,无法对个体一一考查;考查具有破坏性,不允许对个体一一考查.3、抽样调查的要求 为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。小结:只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征。4、总体和样本 总体:要考察的对象的全体叫做总体。个体:组成总体的每一个考察对象称为个体。样本:从总体当中抽出的所有实际被调查的对象组成一个样本。样本容量:样本中个体的数量叫样本容量(不带单
11、位)。二、直方图 1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。2、频数分布直方图 为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。 :画频数分布直方图可按以下步骤:计算数差;确定组距与组数;确定组限;列频数分布表;画频数分布直方图。其中组距和组数的确定没有固定标准,要凭借经验和研究的具体问题决定。一般来说,组数越多越好,但实际操作比较麻烦,当数据在10
12、0个以内时,根据数据的特征通常分成512组。规律总结:统计表问题要抓住各部分的频数之和等于总体,各部分的频率之和等于1;而扇形统计图中,各部分的百分比之和为100。变量之间的关系一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计;2、关系式(1)能根据题意列简单的关系式;(2)能利用关系式进行简单的计算;3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1