1、(1)AB = 00或AB=11时F=1(2)ABC110或111,或001,或011时F=1(3)ABC = 100或101或110或111时F=13. 用真值表证明下列等式.(1) A+BC = (A+B) (A+C)(2) = BC+AC+AB(3) =ABC+(4) AB+BC+AC=(A+B)(B+C)(A+C)(5) ABC+=1证:( 1 ) ( 4 )( 5 )4. 直接写出下列函数的对偶式F及反演式的函数表达式.(1) F= B (C+D)B+B (+D)(2) F= A+ () (A+C)(3) F= AB+(4) F=(1)F= +B+CD+(B+B+D= A+(+C+D
2、)+C(2)F= (A+= (3)F=5. 若已知x+y = x+z,问y = z吗?为什么?y不一定等于z,因为若x=1时,若y=0,z=1,或y=1,z=0,则x+y = x+z = 1,逻辑或的特点,有一个为1则为1。6. 若已知xy = xz,问y = z吗?y不一定等于z,因为若x = 0时,不论取何值则xy = xz = 0,逻辑与的特点,有一个为0则输出为0。7. 若已知 x+y = x+z Xy = xz 问y = z吗? 为什么?y等于z。因为若x = 0时,0+y = 0+z,y = z,所以xy = xz = 0,若x = 1时, x+y = x+z = 1,而xy =
3、xz式中y = z要同时满足二个式子y必须等于z。8.用公式法证明下列个等式(1) +BC+BC左=+ BC + =(1+) + BC+BC = 右边+BD+ACD+CD+B+BCD=C+B+BD 左 = (CD+ACD)+(ABCD+BCD+BD)+(BD+BC(D+AD)+BD(AC+C+)+B(D+D)+ ()+(C+ = ()()+D( )+C+ = D +C+D+C+C+ =1(4)x+wy+uvz= (x+u+w) (x+u+y) (x+v+w) (x+v+y) (x+z+w) (x+z+y)对等式右边求对偶,设右边=F,则F = xuw+xuy+xvw+xvy+xzw+xzy =
4、 xu (w+y)+xv (w+y) +xz (w+y) = (w+y) (xu+xv+xz) F = F= wy+(x+u)(x+v) (x+z) = wy +(x+xu+xv+uv) (x+z) = wy+(x+uv)(x+z) = wy+x+xuv+xz+uvz = wy+x+uvz = wy+x+uvz(5)ABC=ABC 左 = (AB)C+ (AB) = (AB)C+ ( = ABC(6) 左 = = (AB)+(AB)+C = (AB) +(AB)C 右 = ()+AB) +(AB)C9.证明(1) 如果ab = c,则ac = b,反之亦成立(2) 如果+ab = 0,则 =
5、a+b(1)ac = a (ab)= a (ab+b= ab+b = b+ab = 0 说明a =或b = = ()(a+ = a10.写出下列各式F和它们的对偶式,反演式的最小项表达式(1)F= ABCD+ACD+B(2)F= AB+BC(3)F= (1)F=m=m (0,1,2,3,5,6,7,8,9,10,13,14) F=m (15,14,13,12,10,9,8,7,6,5,2,1)(2)F=m (2,3,4,5,7)=m (0,1,6)F=m (7,6,1)(3)F= m (1,5,6,7,8,913,14,15)= m (0,1,3,4,10,11,12)F= m (15,13,
6、12,11,5,4,3)11.将下列函数表示成最大项之积(1) F= (AB)(A+B)+(AB)AB(2) F= (AB)+(BC)(1)F= (AB)A+B+AB)+AB)(A+B)= AB+AB= AB=m (3)=M (0,1,2)(2)F= (AB)+= B+A= m (1,2,3,4,5)=M (0,6,7)12. 用公式法化简下列各式(1) F= A+AB+ABC+BC+BF= A(1+B+BC)+B(C+1) = A+BD+AF=AD(3)F= (A+B)(A+B+C)(+C)(B+C+D)F= AB+ABC+C+BCD = AB+F= F= (A+B)(+C)(4)F=F=
7、AB+ = AB+a)F=F=C+AC(5)F= (x+y+z+) (v+x) (+y+z+F= xyz+vx+yz = vx+xyzF= F= (v+x) (13.指出下列函数在什么输入组合时使F=0(1) F=m (0,1,2,3,7)(2) F=m (7,8,9,10,11)(1)F在输入组合为4,5,6时使F= 0(2)F在输入组合为0,1,2,3,8,10,11,13,14,15时使F= 014.指出下列函数在什么组合时使F=1(1) F=M (4,5,6,7,8,9,12)(2) F=M (0,2,4,6)(1)F在输入组合为0,1,2,3,8,10,11,13,14,15时使F=
8、1;(2)F 在输入组合为1,3,5,7时使F=115.变化如下函数成另一种标准形式(1) F=m (1,3,7)(2) F=m (0,2,6,11,13,14)(3) F=M (0,3,6,7)(4) F=M (0,1,2,3,4,6,12)(1)F=M (0,2,4,5,6)(2)F=M (1,3,4,5,7,8,9,10,12,15)(3)F=m (1,2,4,5)(4)F=m (5,7,8,9,10,11,13,14,15)16.用图解法化简下列各函数(1) 化简题12中(1),(3),(5)(2) F=m (0,1,3,5,6,8,10,15)(3) F=m (4,5,6,8,10,
9、13,14,15)(4) F=M(5,7,13,15)(5) F=M (1,3,9,10,11,14,15)(6) F=m (0,2,4,9,11,14,15,16,17,19,23,25,29,31)(7) F=m (0,2,4,5,7,9,13,14,15,16,18,20,21,23,25,29,30,31)(1)化简题12中(1),(3),(5) F= (A+B) (F= (AC+C)( +AC+ = A F=AC+ 图P4.A16 ( 1 )(2) F= m (0,1,3,5,6,8,10,15) F=D+ +A+ABCD+BC(3) F=m (4,5,6,8,9,10,13,14,15)+ABD +BC+ AC= BD F= AC+ F = ()(B+(6) F=m (0,2,4,9,11,14,15, 16,17,19,23,25,29,31)BCD+E+ABE+ACDE+AE(7) F=m (0,2,4,5,7,9,13,14,15,16,18,20,21,23,25,29,30,31) F= ACE+BE+BCD+17. 将下列各函数化简成与非一与非表达式,并用与非门实现(1) F=m (0,1,3,4,6,7,10,11,13,14,15)(2) F=m (0,2,3,4,5,
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1