ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:490.79KB ,
资源ID:13358265      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13358265.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(拖拉机驾驶室试验台机械系统设计Word文档下载推荐.docx)为本站会员(b****0)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

拖拉机驾驶室试验台机械系统设计Word文档下载推荐.docx

1、 test-bed;Rotating; Mechanical transmission;引言安全驾驶室设计的核心是确保安全空间,其强度特性是在保证安全空间的基础上,保证结构完整性的同时,允许结构塑性变形。当车辆发生翻车等意外事故时,冲击能量通过驾驶室结构的变形吸能和耗散,在一定的变形模式下,车辆应能承受较大的撞击载荷,最大限度地吸收能量,使结构变形向有利于保护驾驶员空间的方向发展,把传递给驾驶员的碰撞能量降低到最小。若变形侵入驾驶员容身空间,则必危及到驾驶员生命1。拖拉机是一种用来拖拉,牵引其他不能自行移动设备的装备。一般来说,它是一种用来拖拽其他车辆或设备的车辆。用于牵引和驱动作业机械完成各

2、项移动式作业的自走式动力机。也可做固定作业动力。由发动机、传动、行走、转向、液压悬挂、动力输出、电器仪表、驾驶操纵及牵引等系统或装置组成。发动机动力经传动系统传给驱动轮,使拖拉机行驶。1.拖拉机驾驶室试验台研究1.1国内外关于ROPS的研究现状 国外大量统计资料表明,在农业作业中,由于拖拉机翻车而造成的人身伤亡事故约占农机总伤亡事故的70%。由翻车引起伤亡的主要原因,一是没有牢固的安全架装置,受到撞击后,驾驶员必需的容身空间受到侵犯,引起窒息性伤亡;二是没有吸收冲击能量的装置,使翻车后往往产生连续滚翻,人员受到冲撞使伤害严重2。轮式拖拉机驾驶室在发生翻车事故时,受到巨大的冲击载荷,结构往往产生

3、很大的变形,对驾驶员的生命安全构成威胁,为此,驾驶室的安全强度引起人们的极大关注。国际、国内都制定了一些轮式拖拉机驾驶室安全强度的试验标准和验收条件,一些欧洲国家还立法规定:新的拖拉机必须安装经过批准的安全驾驶室3。驾驶室保护装置起到保护驾驶员的基本机理是:在发生落物事故时,保护驾驶员不被下落物体击中;在发生翻车事故时,遇到较软的地面保护结构能够扎入地面并支撑机器的自重、遇到硬地面时保护结构能发生塑性变形吸收冲击能量,并能承受一定的载荷,同时能留给驾驶员一定的生存空间4。一个安全的驾驶室结构要求当拖拉机发生翻车等意外事故时,能够抵抗撞击和压力载荷,保证驾驶员的容身空间不受侵犯,同时应允许结构有

4、一定的屈服变形,以吸收外部的撞击能量,这就是其安全强度准则。为了在翻车事故中保障司机的生命安全,当前最有效的方法是在工程车辆上加装翻车保护结构(Roll-over protective structure,简称 ROPS 5 )。翻车保护结构具有一系列的结构件,它的作用是当工程车辆翻车时,减小挤伤系安全带坐着的司机的可能性。在国际上,工程车辆驾驶室保护结构的出现可以追溯到1976年,1972年CIMTC提出了评价FOPS性能的实验室静态检测方法和挠曲极限量(简称DLV 6)的定义,从而使FOPS有了统一的试验规范。我国在1984 年曾对 ROPS 模型试验进行过初步的探讨,但研究工作未深入开展

5、7。此后,科研人员在 ROPS 计算方法和实验室试验方面做了大量的工作。经历了由塑性极限分析8,弹性极限分析9;考虑能量吸收性能的增量变刚度法计算的研究10;到推导了弹性、弹塑性阶段 ROPS/FOPS 变形的计算公式11,12;提出采用非对称弯曲梁的弹性和塑性极限强度理论分析方法13的发展过程。随着非线性理论研究的不断深入和计算机仿真技术的日趋成熟,应用非线性有限元方法对 ROPS 性能进行模拟分析,已经成为 ROPS 设计计算的主流。1.2拖拉机试验台的实验要求为了保证拖拉机驾驶员的安全,拖拉机驾驶室必须要有足够的强度和刚度,能够承受来自各个方向的载荷和冲击,而拖拉机又不会产生较大的变形,

6、以此来保证拖拉机驾驶员的人身安全。以此我们要对拖拉机驾驶室进行加载试验。目前我们国家已经有相关的研究人员对此进行了研究设计。结合国内外关于拖拉机ROPS的研究,拖拉机试验台主要是对拖拉机进行以下实验:1. 动载试验项目和顺序(与静载试验任选)(1) 对前轮承受无配重重量小于50的拖拉机按下列顺序试验:a. 后撞击试验b后压垮试验c前撞击试验d. 侧撞击试验e. 前压垮试验对于单立柱和双立柱防护装置:a 后撞击试验b 压垮试验c 侧撞击试验(2) 对前轮承受无配重重量等于或大于50的拖拉机则按下列顺序试验:a 前撞击试验b 侧撞击试验c. 后压垮试验d 前压垮试验对于单立柱和双立柱防护装置a.

7、前撞击试验c. 压垮试验 静载试验项目和顺序(与动载试验任选)a. 纵向加载试验b 第一次压垮试验c 侧向加载试验d 第二次压垮试验e 第二次纵向加载试验纵向加载试验1.3技术路线(如图1)图12.试验台的总体设计 2.1拖拉机驾驶室试验台的总体设计拖拉机驾驶室试验台的设计主要由总体设计、机械系统设计、液压系统设计、电气控制系统设计四部分组成(如图2)。机架主要用于对实验装置的安装定位,液压加载部分主要用来提供加载实验的动力源,电气控制部分用于试验全程控制、使试验数据得到显示、处理、打印,机械部分则主要用于对拖拉机驾驶室加载点位置的控制。图2设计内容:总体设计:试验台的整体尺寸、结构组成以及确

8、定试验台的试验范围;液压系统:加载油缸运动的液压回路的设计;电气系统:对液压系统中电磁阀的开启关闭的控制;机械系统:试验台的旋转底盘、加载试验时使液压缸的移动的丝杠传动。试验台的工作原理(如图3)试验装置应由机械部分、液压系统和电气控制系统组成。 通过IPC-PLC控制液压泵推动加载油缸实施加载,试验时,压力传感器、位移传感器将加载力和位移量通过A/D数模转换器传递到IPC工控机上,再由工控机对试验结果进行显示、判断处理后对PLC发出指令,从而实时控制加载力的大小,对整个试验过程进行闭环控制。对于一般拖拉机的试验顺序(前轮承受无配重重量小于50的拖拉机):图3试验台适用限制:适用M=(8005

9、000)KG,后轮最小轮距不小于1150mm的农林轮式拖拉机。2.2机械系统方案设计由于传统的设计对于拖拉机驾驶室加载前的定位都比较繁琐,本次设计主要对拖拉机驾驶室试验台的定位进行改善和创新(如图4)。图43.拖拉机和拖拉机驾驶室固定系统设计3.1设计方案传统的设计是先选定拖拉机试验时的位置,选定后将拖拉机的轮毂拆下,再将其固定在底座上,当需要拖拉机转向时,就需要重复上面的步骤。这样的方法在操作时有很大的不便,也给试验人员加大了工作量。本次设计将会针对拖拉机的定位和转向进行重点的设计和改进。旋转底座的设计方案:本次设计将在实验室里设置一个底座,拖拉机驾驶室放置在底座上,底座下设计安装一个蜗轮蜗

10、杆机构,底座可以在蜗轮蜗杆机构的带动下进行水平方向的360旋转,当拖拉机驾驶室一个方向的实验结束后,可以通过蜗轮蜗杆的运动使得底座旋转一定的角度,从而使得拖拉机驾驶室旋转一定的角度,这样可以便于对拖拉机驾驶室的四个不同方向进行加载实验。蜗杆传动是用来传递空间交错轴之间的运动和动力的。最常用的是轴交角=90的减速传动。蜗杆传动能得到很大的单级传动比在传递动力时传动比一般为580常用1550在分度机构中传动比可达300若只传递运动传动比可达1000。蜗轮蜗杆传动工作平稳无噪音。且因为蜗杆反行程能自锁,这就可以避免拖拉机定位后继续产生偏移量。3.2电动机的选择拟定蜗轮蜗杆的传动比i蜗轮蜗杆=100;

11、v=0.15m/s。由于要实现蜗轮蜗杆的自锁,应选用单头蜗杆。由于本设计对蜗轮蜗杆的转速无要求,蜗轮蜗杆只用来带动底座的旋转。因此选择电动机的最低转速,即n电动机=750r/min。 总=联轴器2轴承蜗轮蜗杆=0.990.9920.45=0.437; 电动机功率:P电机=FV/1000/总=60000.15/1000/0.437=2.06KW 其主要性能:额定功率3KW,满载转速750 r/min,40Nm。 总传动比:i总= i蜗轮蜗杆=100。3.2.1动力学参数计算n0= n电动机=750r/min n蜗杆= n0=750r/min n2= n1/ i蜗轮蜗杆=750/100=7.5r/min 计算各轴的功率P0= P电机=2.06KWP蜗杆= P0联轴器=2.060.99=2.04KWP2= P蜗杆轴承蜗杆=2.040.990.45=0.909KW计算各轴扭矩T0=9.55106P0/n0=9.551062.06/750=26.23 Nm T蜗杆=9.55106P2/n蜗杆=9.552.04/750=25.98NmT2=9.55106P2/n2=9.550.909/7.5=1157.46N3.3蜗杆传动的设计计算 选择蜗杆的传动类型:根据GB/T100851988的推荐,采用渐开线蜗杆。 选

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1