ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:191.21KB ,
资源ID:13331541      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13331541.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(学位论文u正交变换的可逆实现及其图像无损编码Word文档格式.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

学位论文u正交变换的可逆实现及其图像无损编码Word文档格式.docx

1、2 可逆U一正交变换 62.1正交矩阵的可逆分解 623 U-正交矩阵的SERM分解 93 可逆U-正交变换的图像无损编码 1131可逆U-变换的无损编码 11参考文献 12AbstractU orthogonal transform is applied into the image lossless coding,and the factorizations of U orthogonal matrices into triangular elementary reversible matrices(TERMs)and single-row elementary reversible ma

2、trices(SERMs)are investigatedThe TERM factorization of an N by N matrix iS determined by N一1 free variables,and therefore,the local approximate optimal TERM factorization can be found by shrinking searchinterval of the N一1 free variablesIf row exchange is used,an 88 orthogonal matrix has only 40320

3、forms of SERM factorizations,and the approximate optimal SERM factorization can be found with the exhaustion search algorithmAt the end。Image lossless coding is achieved by using reversible U matrices,and the experimental results show that the code-rate of lossless compression based on reversible U

4、transform is comparable to that 0f near lossless compression based on float U orthogonal transform:the coding efficiency of SERM factorization outperforms that of TERM;the image coding performance of U orthogonal transform of degree 3 is approximate to that of DCTAs a result,the U orthogonal transfo

5、rmation of degree 3 can be used into the image lossless coding instead of DCTKey words:Uorthogonal transform;triangular elementary reversible matrix;single-row elementary reversible matrix;lossless coding;discrete cosine transform(DCT)摘要U一正交变换应用到图像无损编码中,研究U一正交矩阵的基本三角可逆矩阵(TERM)分解与单行基本可逆矩阵(SERM)分解一个N阶

6、U一正交矩阵的TERM分解由N一1个自由变量决定,用区间收缩方法可以搜索到TERM分解的局部近似最优解如果用行交换方法搜索正交矩阵的SERM分解,那么一个8阶的正交矩阵最多只有40320种可能的SERM分解,用穷举法即能找到SERM的近似最优分解最后,用U一正交矩阵的可逆分解对图像进行无损编码,实验表明可逆U一正交变换的无损编码的码率与浮点U一正交变换的近似无损编码的码率基本相同,SERM分解要比TERM分解更有效,三次U一正交变换的编码效果与离散余弦变换的编码效果几乎完全相同因此,在图像无损编码中,可用三次U一正交变换代替DCT关键词 :U一正交变换;基本三角可逆矩阵;单行基本可逆矩阵;无损

7、编码;离散余弦变换 绪论 正交变换在图像与视频编码的应用中起着非常重要的作用,如JPEG(joint photographic expertsgroup)就是采用离散余弦变换DCT1对图像进行变换编码;H.2642采用整数DCT和wHT(walsh-对预测残差和直流分量进行变换,然后对变换数据进行熵编码由于浮点型正交变换的图像编码必然是有损的,而在某些特定的领域中,如医学图像与遥感图像的压缩,所需要的图像编码算法应该是无损的或渐近无损的,特别是在实时的图像传输系统中,高效率的无损编码算法对于图像的存储与传输有着重要的意义 其实,JPEG-LS33给出了基于线性预测的无损编码,文献4给出了一种基

8、于浮点DCT的无损编码算法,但该算法的效率比较低下应用矩阵的提升方案可以实现线性变换的整数到整数的映射Sweldens等人应用提升方案实现离散小波的整数变换513;文献83用此方法实现了DCT的整数到整数映射;文献9对矩阵的可逆实现进行了系统研究,给出了矩阵能够进行可逆分解的条件:除置换矩阵外,一个NXN的可逆矩阵可以分解为不超过3个单位三角矩阵的积,或N+1个单行基本可逆矩阵(single-row elementary reversible matrix。SERM)的积9,并用DCT实现图像的无损压缩Ll“本文给出了正交矩阵的基本三角可逆矩阵(triangular elementary re

9、versible matrix,TERM)与SERM分解的具体实现方法,并对U一正交矩阵进行分解,然后对变换系数进行SPIHT(set partitioning inhierarchical trees)1妇与自适应算术编码AAC,实现图像的无损压缩另外通过研究基于U一正交变换的图像无损编码算法,展示其良好的数据压缩性能,并期望U一正交变换在其他领域中能得到广泛的应用1 U一正交变换正交函数系 U一正交函数系是20世纪80年代由文献13-53提出的一类L2o,1上的分段多项式正交函数系(简称U一系统);2005年,文献16-在U一系统的基础上构造出了另一类L2o,1上的正交函数系(称之为V一系

10、统)U一系统与V一系统在几何图形表示与频谱研究中取得了令人满意的结果m。21|,文献22应用三次U一正交变换及其全相位滤波器的构造技术,得到了三次全相位U一变换的图像编码算法 r次U一系统是由o,1区间上的前r+1个Legendre多项式为基础构造出来的,其基本思路是首先构造U一系统的函数生成元,然后对函数生成元进行复制反复制得到U一系统的其他基函数,这些基函数连同r+1 Legendre多项式及函数生成元所构成的函数集合就是r次U一系15 1.2 离散U一正交变换(DUT) r次U一系统是L20,1中的完备正交函数系m1引,由于U一系统所张成的线性空间L2o,1中是稠密的,因此,把任意信号投

11、影到该空间后,即进行U一正交变换,其能量会集中到少数的几个系数中22,通过剔除幅值较小的系数,即可达到压缩的目的假设f(i):i一0,1,N一1)是一维离散信号,u(n,i)全U。(z。),那么离散U一正交变换可定义为 那么,式(1)可用矩阵表示为F=Uf不像Fourier三角函数那样,对U一正交函数等间隔离散化后,所得到的离散点列并不完全正交,只是近似正交因此,必须采用一些特殊的处理方法,使得变换矩阵的行向量尽可能地保持原基函数的形状一般可以用下面的方法计算U一正交矩阵1)把o,1区间进行等间隔地划分;2)计算每个区间的积分值,由于U一正交基函数是分段多项式函数,因此用高斯积分可以方便地计算

12、出每个区间的积分值;3)用Gram-Schmidt方法正交化处理,便可得到式(2)所示的U一正交矩阵式(3)是二次U一系统的88正交矩阵:= 0353 6 0.353 6 0.353 6 0.353 6 0.353 6 0.353 6 0.353 6 0.353 6 0.5401 0.3858 0.2315 0.0772 0.0772 0.2315 0.5388 0.54010.5401 0.0772 0.2315 0.3858 0.3858 0.2315 0.0772 0.5401 0.4069 0.2428 0.4617 0.2496 0.2496 0.4617 0.2428 0.4609

13、 0.2415 0.3795 0.3105 0.4485 0.4485 0.3105 0.3795 0.2415 0.1332 0.2593 0.0911 0.6378 0.6378 0.0911 0.2593 0.1332 0.1581 0.4743 0.4743 0.1581 0.1581 0.4743 0.4743 0.1581 0.1581 0.4743 0.4743 0.1581 0.1581 0.4743 0.4743 0.1581 类似二维Fourier变换可以定义二维离散U一正交变换: (4)其中,w(m,x),w(n,y)是关于变量x,y的U-正交函数上式也可表示2 可逆U一

14、正交变换2.1正交矩阵的可逆分解对于线性变换来说,如果变换矩阵是三角矩阵且主对角元素为整数因子,则相应的线性变换都可以可逆实现凹,文献9称这类矩阵为基本三角可逆矩阵(TERM),其中整数因子定义为与整数或整型复数(实部与虚部都是整数的复数)的乘积并不改变其幅值的数,常见的整数因子有l,i文献9也给出了另一类可逆实现的矩阵分解方法,即把变换矩阵分解为单行基本可逆矩阵(SERM)下面讨论TERM与SERM分解的具体实现方法,以及U一正交变换的可逆分解,首先引入下面的结论:定理1 矩阵A可以分解为有限个基本三角可逆矩阵(或单行基本可逆矩阵)与置换矩阵的积的充分必要条件是定理2若A是正交矩阵,则A可以

15、分解为有限个基本三角可逆矩阵或单行基本可逆矩阵与置换矩阵的积定理2的结论是显然的,因为若A是正交矩阵,则因此,对u一正交变换来说,可以把U一正交矩阵分解为TERM或SERM与置换矩阵的乘积,实现可逆的线性变换由于可逆变换需要对变换系数进行舍入处理,这样有可能降低正交变换性能因此,在分解过程中,必须考虑可逆线性变换的误差假设正交矩阵A可以分解为置换矩阵P与有限个基本可逆矩阵矩阵S。(i=1,2,L)的积,即,x,y,分别为N维的输入向量、正交变换的输出向量及可逆变换的输出向量,H;是用S。(i=1,2,L)作整数变换所产生的误差如果采用四舍五入对变换系数进行取整,那么H,的每个分量的取值都在(一05,05)内,因此,总误差“满足下列关系9:其中的值达到最小时,所得到的分解是近似最优的。2.2 U一正交变换的TER

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1