1、c(n,m)=A(n,m)/m!=n!/(n-m)!*m!);c(n,m)=c(n,n-m);3其他排列与组合公式 从n个元素中取出r个元素的循环排列数A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为 n!/(n1!*n2!*.*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Anm(n为下标,m为上标) Anm=n(n-1).(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标) =n!;0!=1;An1(n为下标1为上标)=n 组合(
2、m(n为下标,m为上标) m=Anm/Amm ;m=n!/m!(n-m)!n(两个n分别为上标和下标) =1 ;1(n为下标1为上标)=n;m=n-m 2008-07-08 13:30公式A是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数 R参与选择的元素个数 -阶乘 ,如9!9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2).(n-r+1); 因为从n到(n-r+1)个数为n(n-r+1)r举例:Q1:有从1到9共计9个球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。即对排列顺序有
3、要求的,既属于“排列A”计算X畴。 上问题中,任何一个只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式A(3,9)9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个球在一起即可。即不要求顺序的,属于“组合C”计算X畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1
4、排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有 种不同方法 (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有 种不同方法 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算 例2 排成一行,其中 不排第一, 不排第二, 不排第三, 不排第四的不同排法共有多少种?解 依题意,符合要求的排法可分为第一个排 、 、 中
5、的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: 符合题意的不同排法共有9种 按照分“类”的思路,本题应用了加法原理为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型 例判断下列问题是排列问题还是组合问题?并计算出结果 (1)高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:从中任取两个数求它们的商可以有多
6、少种不同的商?从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法?分析(1)由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题其他类似分析 (1)是排列问题,共用了 封信;是组合问题,共需握手 (次) (2)是排列问题,共有 (种)不同的选法;是组合问题,共有 种不同的选法 (3)是排列问题,共有 种不同的商;是组合问题,共有 种不同的积 (4)是排列问题,共有 种不同的选法;
7、例证明 证明 左式 右式 等式成立 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质 ,可使变形过程得以简化 例5化简 解法一原式 解法二原式 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化 例6解方程:(1) ;(2) 解 (1)原方程 解得 (2)原方程可变为 , , 原方程可化为 即 ,解得 第六章排列组合、二项式定理 一、考纲要求 1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项
8、式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构 三、知识点、能力点提示 (一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有33=35(种)(二)排列、排列数公式排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题
9、方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有()A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有A12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有A13;在首末两位数排定后,中间3个位数的排法有A33,得A13A33A1236(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?将数字1填入第2方格,则每个方格的标号与所填的
10、数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3A13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有(A.140种B.84种C.70种D.35种抽出的3台电视机中甲型1台乙型2台的取法有C14C25种;甲型2台乙型1台的取法有C24C15种根据加法原理可得总的取法有C24C
11、25+C24C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8C15C24C22= 1=1680(种).(四)二项式定理、二项展开式的性质二项式定理揭示了二项式的正整数次幂的展开法则
12、,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x- )10的展开式中,x6的系数是() A.-27C610B.27C410C.-9C610D.9C410设(x- )10的展开式中第+1项含x6,因T+1=C10x10-(- ),10-=6,=4于是展开式中第5项含x 6,第5项系数是C410(- )4=9C410故此题应选D.例7(x-1)-(x-1)2(x-1)3-(x-1)+(x-1)的展开式中的x的系数等于此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+ )4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为(A.1B.-1C.0D.2A. 例92名医生和4名护士被分配到2所学校为学生
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1