ImageVerifierCode 换一换
格式:DOCX , 页数:30 ,大小:4.13MB ,
资源ID:13161751      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13161751.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(NBIoT与LoRa技术详解及竞争态势分析Word文件下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

NBIoT与LoRa技术详解及竞争态势分析Word文件下载.docx

1、物联网的无线通信技术很多,主要分为两类:一类是Zigbee、WiFi、蓝牙、Z-wave等短距离通信技术;另一类是LPWAN(low-power Wide-Area Network,低功耗广域网),即广域网通信技术。LPWA又可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱下,3GPP支持的2/3/4G蜂窝通信技术,比如EC-GSM、LTE Cat-m、NB-IoT等。NB-IoT的标准及进展-RAN方面2014年5月,华为收购了Nuel公司,开始和沃达丰进行窄带蜂窝物联技术的研究,提出了窄带技术NB M2M。2015年5月,华为、沃达丰联合高通共同制定

2、了相关的上下行技术标准,融合NB OFDMA形成了NB-CIoT。NB-CIoT提出了全新的空口技术,相对来说在现有LTE网络上改动较大,但NB-CIoT是提出的6大Clean Slate技术中,唯一一个满足在TSG GERAN #67会议中提出的5大目标(提升室内覆盖性能、支持大规模设备连接、减小设备复杂性、减小功耗和时延)的蜂窝物联网技术,特别是NB-CIoT的通信模块成本低于GSM模块和NB-LTE模块。此时,爱立信和诺基亚联合推出窄带蜂窝技术NB-LTE,与NB-CIoT的定位较为相似,但NB-LTE更倾向于与现有LTE兼容,其主要优势在于容易部署。2015年7月,爱立信和华为分别向3

3、GPP提交标准提案。最终,在2015年9月的RAN #69会议上经过激烈讨论后协商统一,由3GPP在Rel-13版本中将两种技术融合形成了NB-IoT标准。NB-IoT从窄带技术演变为3GPP的正式标准,相关厂商、运营商积极的推动和市场真实存在的需求是两个不可忽略的因素。3GPP的通信技术标准主要可分为Core Part(主体功能)、性能标准及RF一致性测试标准等。其中,主体功能标准指的是协议的具体内容,包括信令协议、网络接入等,主要与开发相关;性能标准主要是各个子技术领域的性能,跟测试强相关;一致性测试标准,主要包括一些流程及功能的测试标准。NB-IoT的标准及进展-SA/CT方面从Rel-

4、12开始,3GPP逐步在研究MTC通信增强的核心网架构,至Rel-13开始重点研究NB-IoT及DECOR/eDECOR相关技术。3GPP核心网侧与NB-IoT相关的主体标准大部分处于stage2(业务与系统架构),2016下半年至2017年初启动stage3(核心网与终端)的相关工作。为了满足海量碎片化、低成本、低速率、低功耗的NB-IoT物联网应用,核心网方面主要考虑了以下方面的问题。(1)高效地支持非频繁小包传送面向NB-IoT进一步提高对非频繁小包传送的处理效率。由于NB-IoT终端的数量可能呈指数型增长,但每个终端的数据量及通信周期都比较低,而以现有的EPS核心网(基于S1接口)去处

5、理此类业务,其效率将非常低且有过载的风险,因此,需要最小化整个EPS系统的信令开销,尤其是空口部分(如:RRC连接的建立和释放),此外,还需要加强EPS系统安全流程(此部分是由SA WG出)。目前有两种优化方向,一种是基于控制面的优化方案,即通过NAS过程来传送小包;另外一种是基于用户面的优化方案,即通过RRC suspend 态在UE 和RAN节点同时缓存用户的上下文,以减少信令的交互。以上两种优化方案在TS23.401 Rel-14版本中均已加入,方案一作为必选方案,而方案二为可选方案。目前,3GPP倾向于采用基于控制的优化方案,此部分标准在CT(核心网与终端)的主体工作目前还在进行当中。

6、(2)使用小包传送高效地支持跟踪装置3GPP没有专门定义此类业务的业务模型,目前还处于研究状态,预计在Rel-14版本中解决,其业务模型属于MAR(移动终端周期性上报)业务模型的变种,需要在定位、移动性、传输效率等方面有进一步的增强和优化。(3)高效的寻呼区域管理针对海量静止或限制移动性的终端,由于空口资源稀缺、核心网接口资源有限等原因,3GPP SA2目前还在进行寻呼优化的讨论,预计将在Rel-14中完善此部分功能。寻呼优化的主要思路是考虑仅在用户上一次接入的eNB 或小区内进行寻呼而非整个TA(初步假设,NB-IoT小区的TA code与现有eNB小区的TA code 是不同的),以节省空

7、口及核心网的相关资源。在同样的覆盖区域,NB-IoT 的设备是海量的,远多于传统的蜂窝终端设备。运营商在窄带频谱下运营,有可能并不能提供足够的寻呼所需资源、UE的标识(S-TMSI,IMSI)。与传统蜂窝相比,由于小数据包的消息量限制,单次寻呼消息中要包含以上标识是极为受限的;另外一方面,覆盖增强是标准中强制要求的,因此,寻呼消息可能要占用更长时间(重复发送相同的寻呼消息的间隔周期更长)。大部分NB-IoT设备被认为是静止或很少移动的,因此可以对其寻呼范围进行限制,不需要在其所属的整个TA进行寻呼,这样可以减少对寻呼资源的消耗。但是,当UE 进入IDLE模式时,eNB上报给MME的上一次为NB

8、-IoT UE服务的小区信息可能是不准确的(甚至静止的用户也存在这种可能)。这是因为在UE 静止的情况下,用户的主服小区的改变可能由各种原因引起,如射频负载条件改变、邻小区的射频条件改变(类似建筑物的阻挡,导致UE接入其他基站)。(4)DECOR/eDECOR现网部署时,核心网可能会存在多个NB-IoT的DCN(DedicatedCore Network)。根据TSG RAN侧TS23.236的输出,NB-IoT DCN可能会同时连接到E-UTRAN和NB-IoT的RAN节点,可以根据用户类型采取两种不同方案为其选择合适的DCN。一种是重定向方案,参考TR23.707 DECOR功能;另一种是

9、UE辅助,参考TR23.711中的eDECOR。从目前协议的进展来看,由于重定向流程会导致UE与RAN及网络侧之间产生额外的信令交互,所以DECOR部署的可能性较小,可能会作为过渡方案;而eDECOR由于对UE有影响,目前还处于初期研究阶段,将在Rel-14后期逐步完善,未来随着虚拟化网络的部署,有望被广泛采用。(5)支持non-IP 数据类型在M2M应用中,非I 数据使用是常见的,如6LowPAN、MQTT-S等。当此类应用部署在NB-IoT 网络时,应用服务器AS或业务能力服务器SCS与用户间的non-IP数据需要通过网络进行传送,有两种方案可供选择,一种是通过non-IP专属的PDN点对

10、点隧道方式通过SGi接口进行传送,另外一种是通过SCEF进行传递。目前,由于CSGN与SCEF之间的T6a接口还处于初步研究阶段,而通过SGi接口传送non-IP数据可以使C-SGN统一数据出口,便于未来面向NB-IoT类业务进行计费点选择及计费模式设计,因此,SGi方式可能会被运营商优先采用。(6)支持SMS部分已有M2M业务是采用SMS支持的,为了能够全面的覆盖此类业务,在部署NB-IoT后,需要考虑两个问题:是否保留联合附着以获取短信传递能力或者只进行PS 的附着;是否会存在只使用SMS进行信息传递而无需建立任何PDN连接的终端及其解决方案。在Rel-14中会进一步完善NBIoT核心网支

11、持SMS的解决方案,但运营商现网部署时可以根据实际需求考虑是否部署SMS功能,例如仅部署IP 及non-IP数据承载方式,主要是考虑到支持SMS功能需C-SGN与短信中心之间开通SGd接口,且需对现网短信中心进行升级改造,对CSGN也有相关功能要求。(7)授权用户支持覆盖增强(CE)技术对于传播环境较差的用户,例如地下管道内的设备,需要很强的穿透性能,此时需要使用CE技术以获得更好的穿透效果。但CE技术的使用,需要网络侧提供额外的资源。因此,应该对用户进行认证,对可使用CE技术的用户加以限制,以保证只有签约并得到CE授权的用户方可享受此特性,实现差异化的服务。(8)OverLoad控制关于减少

12、核心网过载的风险的议题,3GPP发起了多项研究,提出了包括接入等级划分、基于eNB辅助的(在eNB侧进行拒绝、延迟、队列)等多种方案,而在TS23.401中,针对NB-IoT设备采用的拥塞控制方案是基于EPS系统原有backoff timer机制的升级,采用离散化的方式对NB-IoT设备并发请求进行处理来实现过载控制。(9)头压缩增强由于NB-IoT大部分应用场景使用的都是小数据包且通信频率很低,例如周期性MAR(Mobile Autonomous Reporting)和NC(Network Command)使用20200 byte/30min或更长时间间隔的数据传输。考虑到IP 及传输层的头

13、开销,如20 byte的IPv4 、40 byte的IPv6、8 byte 的UDP、20 byte的TCP、12 byte的RTP,为了更高效地支持海量NB-IoT/eMTC类的终端,采用头压缩增强技术势在必行。由于非频繁的数据传输及移动性,eNB和UE中保留的头压缩上下文可能会被重置(例如,当UE进入IDLE模式或切换eNB时),如果频繁发送数据或移动,将导致数据包产生全量头开销或额外开销。此时,头压缩将是高效支持IP类小包业务的重要保障。因此,当采用基于控制面优化的小包传输的方案时,头压缩功能需要支持NB-IoT终端用户从连接态至IDLE态的转换及移动性管理。另外需注意,当non-IP类

14、业务场景发生时,必须要将IP头压缩功能关闭,故网络侧还需要根据不同的情况来决定是否启用头压缩功能。LTE-M、EC-GSM和NB-IoT演进万物互联是大趋势,是发展的必然,各种物联网技术也是梭镖林立。面对各种兴起的物联网技术,3GPP主要有三种标准:LTE-M、EC-GSM和NB-IoT,分别基于LTE演进、GSM演进和Clean Slate技术。LTE-MLTE-M,即LTE-Machine-to-Machine,是基于LTE演进的物联网技术,在R12中叫Low-Cost MTC,在R13中被称为LTE enhanced MTC (eMTC),旨在基于现有的LTE载波满足物联网设备需求。知道

15、LTE UE categories的朋友并不会陌生。为了适应物联网应用场景,3GPP在R11中定义了最低速率的UE设备为UE Cat-1,其上行速率为5Mbps,下行速率为10Mbps。为了进一步适应于物联网传感器的低功耗和低速率需求,到了R12,3GPP又定义了更低成本、更低功耗的Cat-0,其上下行速率为1Mbps。EC-GSMEC-GSM,即扩展覆盖GSM技术(Extended Coverage-GSM)。各种LPWA技术的兴起,传统GPRS应用于物联网的劣势凸显。2014年3月,3GPP GERAN#62会议“Cellular System Support for Ultra Low Complexityand Low Throughput Internet of Things”研究项目提出,将窄带(200kHz)物联网技术迁移到GSM上,寻求比传统GPRS高20dB的更广的覆盖范围,并提出了5

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1