1、3. 已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是( B )A.椭圆 B.圆 C.直线 D.点4. 椭圆上一点到焦点的距离为2,为的中点,是椭圆的中心,则的值是 4 。5. 选做:F1是椭圆的左焦点,P在椭圆上运动,定点A(1,1),求的最小值。解:7. (1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为_(2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。分析:(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。(2)B在抛物线内,如图,作QR
2、l交于R,则当B、Q、R三点共线时,距离和最小。(1)(2,)连PF,当A、P、F三点共线时,最小,此时AF的方程为 即 y=2(x-1),代入y2=4x得P(2,2),(注:另一交点为(),它为直线AF与抛物线的另一交点,舍去)(2)()过Q作QRl交于R,当B、Q、R三点共线时,最小,此时Q点的纵坐标为1,代入y2=4x得x=,Q()点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。8、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。(1)的最小值为 (2)的最小值为 PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。(1)4-
3、设另一焦点为,则(-1,0)连A,P 当P是A的延长线与椭圆的交点时, 取得最小值为4-。(2)作出右准线l,作PHl交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,当A、P、H三点共线时,其和最小,最小值为(二) 标准方程求参数范围1. 试讨论k的取值范围,使方程表示圆,椭圆,双曲线。(略)2. ( C )A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3. 若方程表示焦点在y轴上的椭圆,所在的象限是( A )A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. 方程所表示的曲线是 椭圆的右半部分 .5. 已知方程表示焦点在X轴上的
4、椭圆,则实数k的范围是 k1 (三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,5),椭圆上一点到两焦点的距离之和为26;(2)长轴是短轴的2倍,且过点(2,6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程.2. 简单几何性质1 求下列椭圆的标准方程(1); (2)过(3,0)点,离心率为。 (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是。(4)椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为(5)已知P点在以坐标轴为对
5、称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点。3过椭圆的左焦点作轴的垂线交椭圆于点P,F2为右焦点,若,则椭圆的离心率为_(四)椭圆系共焦点,相同离心率1 椭圆与的关系为( A ) A相同的焦点 B。有相同的准线 C。有相等的长、短轴 D。有相等的焦距2、求与椭圆有相同焦点,且经过点的椭圆标准方程。 (五)焦点三角形4a1. 已知、为椭圆的两个焦点,过的直线交椭圆于、两点。若,则 8 。2. 已知、为椭圆的两个焦点,过且斜率不为0的直线交椭圆于、两点,则的周长是 20 。3. 已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长为
6、。(六)焦点三角形的面积: 1. 已知点是椭圆上的一点,、为焦点,求点到轴的距离。设则解得,所以求点到轴的距离为2. 设是椭圆上的一点,、为焦点,求的面积。当,S=3. 已知点是椭圆上的一点,、为焦点,若,则的面积为 。4. 已知AB为经过椭圆的中心的弦,F(c,0)为椭圆的右焦点,则AFB的面积的最大值为 cb 。(七)焦点三角形1. 设椭圆的两焦点分别为和,为椭圆上一点,求的最大值,并求此时点的坐标。2. 椭圆的焦点为、,点在椭圆上,若,则 2 ; 120O 。3. 椭圆的焦点为、,为其上一动点,当为钝角时,点的横坐标的取值范围为 。4. P为椭圆上一点,、分别是椭圆的左、右焦点。(1)若的中点是,求证:;(2)若,求的值。(1)MO为三角形PF1F2的中位线,(2)=(八)与椭圆相关的轨迹方程定义法:1. 点M(x,y)满足,求点M的轨迹方程。()2. 已知动圆过定点,并且在定圆的内部与其相内切,求动圆圆心的轨迹方程.
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1