ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:430.50KB ,
资源ID:13042381      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13042381.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(线性方程组的解法毕业论文Word文档格式.doc)为本站会员(wj)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

线性方程组的解法毕业论文Word文档格式.doc

1、16目 录标题1中文摘要11 引言12 预备知识13 线性方程组的各种解法2 3.1 克莱姆法则分析2 3.2 消元法2 3.2.1 高斯消元法2 3.3 三角分解法3 3.4 标准上三角形矩阵7 3.5 齐次线性方程组的一种公式化解法114 结束语13参考文献14致谢15外文页16线性方程组的解法摘 要 线性方程组是线性代数的主要内容,包括线性方程组有解,无解地判断,消元法解线性方程组和线性方程组解的构造.它与矩阵、向量的内容紧密相关,与矩阵、向量组相关的很多重要结论都是线性方程组相关结论的应用和推广.通过对方程组的解法进行说明和比较,以及对一些特殊方程组的解法的介绍,找出合理的方法,以便更

2、快地求解.关键词 克莱姆法则 高斯消元法 三角分解法 标准上三角形矩阵1 引言随着现代工业的发展,线性方程组的应用出现在各个领域,伴随着大量方程和多未知数的出现,寻找简便而且准确的求解方法就显得十分重要而且具有现实意义.因此对线性方程组解法的研究就显得十分必要.由于各个领域都出现了线性方程组,所以线性方程组的种类也变得更加复杂.本文引用了克拉默规则,高斯消元法,三角分解法,标准上三角形矩阵来求线性方程组的解.通过对方程组的解法进行说明与比较,以及对一些特殊方程组的解法的介绍,找出合理的方法以便更快地进行求解.2 预备知识(1)定理1.1 (克莱姆(Cramer)法则)一个含有n个未知量n个方程

3、的线性方程组 , , , 当它的系数行列式时,有且仅有一个解 ,此处是把行列式第j列的元素换以方程组的常数项 , , ,而得到的n阶行列式.(2)定理1.2 初等变换把一个线性方程组变为一个与它同解的线性方程组.3 线性方程组的各种解法3.1 克莱姆法则分析一般线性方程组可以分为两类,一类是未知量个数与方程个数相等;另一类是未知量个数与方程个数不相等.当我们面对前一种情况的时候,我们往往采用克莱姆法则来求解比较简洁.要用克莱姆法则求解,必须满足未知量个数与方程个数相等并且方程组的系数行列式不等于0.克莱姆法则的使用具有一定的优点同时又具有极大的局限性。优点是:克莱姆法则是直接求解,形式简洁,在

4、某些理论的推导与证明方面能发挥作用;缺点是:克莱姆法则只适用于求解未知量个数与方程个数相等并且系数行列式不等于0的情况,计算量比较大.3.2 消元法如果我们所求的线性方程组的未知量的个数与方程组个数不相等的话,克莱姆法则就不适用了.这个时候要解这类方程组最基本的方法就是消元法.初等变换指的是把一个线性方程组变为一个与它同解的线性方程组,而消元法是对给定线性方程组重复的使用初等变换,得到一串与原方程组同解的方程组,让某些未知量在方程组中出现的次数减少,达到化简方程组的目的.所以,消元法的根本思想就是化简方程组的增广矩阵,减少未知数的个数.对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次

5、数内求得精确解的方法叫做直接法,而最基本的直接法是高斯(Gauss)消元法.3.2.1 高斯(Gauss)消元法 用高斯消元法求解线性方程组的基本思想是设法消去方程组的系数矩阵A的主对角线下的元素,而将Ax=b化为等价的上三角形方程组,然后再通过回代过程便可以获得方程组的解;或者是将方程组的增广矩阵化为阶梯型矩阵,然后通过回代求解.例1 解方程组解:该方程组的增广矩阵为 = 得到原方程的一般解为 ,为自由未知量.所以原方程组的通解为 ,为任意常数.令,得到原方程组的一个特解为(-8,0,0,-3)当线性方程组未知量个数与方程个数不等时,最先想到的是利用高斯消元法来求解,而当我们遇到的方程组系数

6、矩阵是个n阶矩阵时,应该选择什么样的方法求解比较合适呢.现在先说明一个新的求线性方程组的方法.3.3 三角分解法(LU分解)已给n阶矩阵A,若能求得一个下三角方阵L和一个上三角方阵U,使得A=LU,则我们称矩阵A有LU三角分解.由高斯消元法,我们知道它是通过逐步消元过程,将方程组的系数矩阵A转变为一个上三角矩阵,这实际上相当于用一系列初等矩阵左乘A.高斯消元法的矩阵形式:第一步:第一次消元()即相当于:记: 其中,. 第k步:第k次消元: ,其中, 第n-1步:第n-1次消元(): 记于是可以推出A=LU.其中 .由上述讨论可知,高斯消元法实质上产生了一个将系数矩阵A分解为上三角阵与下三角阵相

7、乘的因式分解.若A的所有顺序主子式均不为0,则A的LU分解唯一(其中L为单位下三角阵). 设有方程组AX=b,并设A=LU,于是AX=LUX=b,令UX=Y,则LY=b.于是求解AX=b的问题等价于求解两个方程组UX=Y和LY=b.具体的解法如下:(1)利用顺推过程解LY=b,其计算公式为: ,(2)利用回代过程解UX=Y,其计算公式为: ,上述方法称为求解线性方程组的三角直接分解法,这种分解又称为Doolittle分解法.Doolittle分解法的算法:分解:对i=1,2,n; 计算U的第r行,L的第r列元素 对r=2,3,n , , 顺推过程:求解LY=b , 回代过程: 回代过程解UX=

8、Y , 三角分解法适用于求解系数行列式为n阶并且顺序主子式(k=1,2,n)的线性方程组.所以,当未知量个数与方程个数不等时,这类方程组求解一般考虑消元法;当未知量个数与方程个数相等时,可以考虑用消元法,若这个方程组的系数行列式不等于0,还可以考虑用克拉默规则求解,若顺序主子式,则可以用三角分解法求解.例2 求解线性方程组 方法 解:此方程组的系数行列式,那么由定理1.1克莱姆法则求得 所以 即原方程组的解为 方法 解:此方程组的增广矩阵为 由高斯消元法可以把这个增广矩阵简化成与原方程同解的阶梯型矩阵 可以得到原方程组的一般解为解这个方程组,得到原方程组的解为方法 解:这个方程组的系数行列式是

9、个3阶矩阵,并且顺序主子式不等于0,则可以用三角分解法.利用三角分解法的分解公式可得 所以有 由LY=b可得所以有则再由UX=Y求出X原方程组的解为3.4 标准上三角形矩阵例3 求方程组的通解增广矩阵 利用初等变换将其化为一个阶梯型矩阵 由这个阶梯型矩阵的三个非0行可以知道R(A)=R(Ab)=3.所以方程组有解,因为未知量有5个,所以自由未知量有2个.选为自由未知量,令为两个任意常数,那么AX=b的同解方程为:将代入这个方程组中,得到 所以通解为 这种解法在需要回代求解,进行矩阵运算,而且还要进行自由未知量的选取,可是自由未知量的选取并不是无限“自由”,特别是对刚学这种方法的人来说更容易选错

10、自由未知量.下面将介绍一种新的方法,这种新方法只进行矩阵运算,不用选取自由未知量,但是对化简后的阶梯型矩阵有要求,只适合某一特定情况.若n阶矩阵满足下列三个条件:的主对角线下方元素全为0;的非0行的第一个非0元素是1且该1在主对角线上;主对角线上的元素若是1,则该1所在的列的其余元素全为0.则称这个n阶矩阵为标准上三角形矩阵.齐次线性方程组AX=0的解法如下(A为mn矩阵):第一步,对系数矩阵A进行初等行变换化成阶梯型矩阵B.设R(A)=r,若r=n,则只有0解;若rn,则第二步,当mn时,将B下面的m-n个0行去掉,将B改写成n阶矩阵C(当m=n时,B已是n阶矩阵,仍记B为C,即B=C).第

11、三步,对n阶矩阵C进行初等行变换化成标准上三角形矩阵D.第四步,将D的主对角线上的元素0改写成为-1最后,这些改写成-1的元所在的列:(改写后的列)即为齐次方程AX=0的基础解系,AX=0的通解为: ,其中为任意常数.非齐次线性方程组AX=b的解法如下:第一步,对增广矩阵(AB)进行初等行变换化成阶梯型矩阵(Bb1).若R(A) R(Ab),则方程组无解.若R(A)=R(Ab)=r,则:第二步,当mn时,将(Bb1)下面的m-n个0行去掉,将B改写成n阶矩阵C,将m维向量b1改写成n维向量b2(当m=n时,认为已经改写.)第三步,对(Cb2)进行初等行变换,将矩阵C化成标准上三角形矩阵D.此时,(Cb2)化成(Db3).若r=n,则D=En,其中En是n阶单位矩阵.X=b3是方程AX=b3的唯一解.若rn,则:第四步,将D的主对角线上的元素0改写成-1.最后,这些改写成-1的列即为相应齐次方程AX=0的基础解系,AX=b的通解为:,其中为任意常数.从这两种解法可以看出,这种求解只进行了矩阵运算与改写矩阵,没有提及选取自由未知量,实际上在第四步就暗含了自由未知量的选取,并且第四步是规范的.用这种新方法解例3.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1