ImageVerifierCode 换一换
格式:DOCX , 页数:37 ,大小:150.07KB ,
资源ID:13014248      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13014248.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Abaqus优化设计和敏感性分析高级教程Word下载.docx)为本站会员(wj)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Abaqus优化设计和敏感性分析高级教程Word下载.docx

1、从Abaqus 6.11新增Optimization module后,借助于其强大的非线性分析能力,结构优化设计变得更具可行性和准确性。12.1.1 结构优化概述结构优化是一种对有限元模型进行多次修改的迭代求解过程,此迭代基于一系列约束条件向设定目标逼近,Abaqus优化程序就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。Abaqus提供了两种基于不同优化方法的用于自动修改有限元模型的优化程序:拓扑优化(Topology optimization)和形状优化(Shape optimization)。两种方法均遵从一系列优化目标和约

2、束。12.1.2 拓扑优化拓扑优化是在优化迭代循环中,以最初模型为基础,在满足优化约束(比如最小体积或最大位移)的前提下,不断修改指定优化区域单元的材料属性(单元密度和刚度),有效地从分析模型中移走单元从而获得最优设计。其主体思想是把寻求结构最优的拓扑问题转化为对给定设计区域寻求最优材料的分布问题。下图12-1为Abaqus帮助文件提供的应用实例,展示了汽车控制臂在17次迭代循环中设计区域单元被逐渐移除的优化过程,其中优化的目标函数是最小化控制臂的最大应变能、最大化控制臂的刚度,约束为降低57%产品体积。优化过程中,控制臂中部的部分单元不断被移除。图 12-1 拓扑优化进程示例Abaqus拓扑

3、优化提供了两种算法:通用算法(General Algorithm)和基于条件的算法(Condition-based Algorithm)。通用拓扑优化算法是通过调整设计变量的密度和刚度以满足目标函数和约束,其较为灵活,可以应用到大多数问题中。相反,基于条件的算法则使用节点应变能和应力作为输入数据,不需要计算设计变量的局部刚度,其更为有效,但能力有限。两种算法达到优化目标的途径不同,Abaqus默认采用的是通用算法。从以下几个方面比较两种算法:中间单元:通用算法对最终设计会生成中间单元(相对密度介于01之间)。相反,基于条件的算法对最终设计生成的中间单元只有空集(相对密度接近于0)或实体(相对密

4、度为1)。优化循环次数:对于通用优化算法,在优化开始前并不知晓所需的优化循环次数,正常情况在3045次。基于条件的优化算法能够更快的搜索到优化解,默认循环次数为15次。分析类型:通用优化算法支持线性、非线性静力和线性特征频率分析。两种算法均支持几何非线性、接触和大部分非线性材料。目标函数和约束:通用优化算法可以使用一个目标函数和数个约束,这些约束可以全部是不等式限制条件,多种设计响应可以被定义为目标和约束,而基于条件的优化算法仅支持应变能作为目标函数,材料体积作为等式限制条件。12.1.3 形状优化形状优化主要用于产品外形仅需微调的情况,即进一步细化拓扑优化模型,采用的算法与基于条件的拓扑算法

5、类似,也是在迭代循环中对指定零件表面的节点进行移动,重置既定区域的表面节点位置,直到此区域的应力为常数(应力均匀),达到减小局部应力的目的。比如图12-2所示的连杆,其进行形状优化,表面节点移动,应力集中降低。图 12-2 形状优化示例形状优化可以用应力和接触应力、选定的自然频率、弹性应变、塑形应变、总应变和应变能密度作为优化目标,仅能用体积作为约束,但可以设置几何限制,以满足零件制造可行性(冲压、铸造等)。当然也可以冻结某特定区域、控制单元尺寸、设定对称和耦合限制。注意:1. 在进行形状优化之前,优化区域必须具有较好的网格质量,优化过程中,为了获得较高质量的网格,Abaqus优化模块可以对选

6、定网格进行光顺,使得内外部节点位置合适。2. 光顺算法是基于单元的,比较耗费计算时间,可以只对优化区域内的单元指定网格光顺化,同时,光顺区域节点必须是自由的,不能对其施加约束或冻结。12.1.4 优化术语拓扑和形状优化必须在设定好的目标和约束条件下进行,如此程序才会在约束框架内向优化目标迈进。仅仅描述要减小应力或者增大特征值是不够,必须有更为特定的定义,比如,最小化两种载荷下的最大节点应力,最大化前5阶特征值之和,如此的优化目标称之为目标函数(Objective Function);同时,在优化过程中可以强制限定某些特定值,比如可以指定某节点的位移不超过一定值,如此的强制性限制叫做约束(Con

7、straint)。目标函数和约束都是结构优化的特定术语,Abaqus/CAE中用到的术语有:设计区域(Design area):即结构优化的模型修改区域,可以是整个模型,也可以是模型的一部分或几个部分。在给定的边界条件、载荷和制造约束条件下,拓扑优化通过增加或删除设计区域内单元的材料达到最优化设计,而形状优化则通过移动表面节点以修改设计区域表面达到优化目的。设计变量(Design variables):设计变量即优化设计中需要改变的参数。对于拓扑优化,设计区域中单元密度即是设计变量,Abaqus拓扑优化模块(ATOM)在其优化迭代中改变单元密度并将其耦合到刚度矩阵之中,实质是赋予单元极小的质量

8、和刚度从而使其几乎不再参与结构的全局响应。对于形状优化而言,设计区域的表面节点位移即是设计变量,优化时,Abaqus将节点向外或向内移动,抑或不动,限制条件决定表面节点移动的大小和方向。设计循环(Design cycle):优化是一个不断更新设计变量的迭代过程,在每次迭代中Abaqus会对更新了变量的模型进行求解、查看结果以及判定是否达到优化目的,一次迭代过程即一个设计循环。优化任务(Optimization task):一个优化任务即包含有设计响应、目标、约束条件和几何限制等在内的优化定义。设计响应(Design responses):导入优化程序用于优化分析的输入值称之为设计响应。设计响应

9、可以从Abaqus的结果输出文件.odb中直接读取,比如刚度、应力、特征频率及位移等,或者对结果文件计算得到,比如重量、质心或相对位移等。设计响应是与模型区域紧密相关的标量值,例如一个模型区域内的最大应力或体积,同时,设计响应也与特定分析步、载荷工况有关。目标函数(Objective functions):即定义的优化目标。目标函数是从设计响应中萃取的标量值,如最大位移或最大应力。一个目标函数可以由几个设计响应组成函数公式表达。如果设定目标函数是最小化或最大化设计响应,Abaqus优化模块则加入每个设计响应值到目标函数进行计算。此外,如果定义了多目标函数,可以使用权重因子定义其对优化的影响程度

10、。约束(Constraints):约束也是从设计变量中萃取的标量值,但其不能从设计响应组合得到。约束是用于限定设计响应值,比如体积减少50%;同时约束也可以是到独立于优化之外的制造和几何限制,比如约束优化后的结构能够用于铸造或冲压成形。停止条件(Stop conditions): 当满足某一停止条件时,优化迭代即终止。全局停止条件是最大优化迭代(设计循环)次数;局部停止条件是优化结果达到某一最大/最小定义值。12.2 优化设计SOP12.2.1 优化设计SOP先试算Abaqus初始结构模型,以确认边界条件、结果是否合适,然后结合图12-3的Abaqus/CAE优化模块,设置优化设计: 创建优化

11、任务。 创建设计响应。 应用设计响应创建目标函数。 应用设计响应创建约束(可选)。 创建几何限制(可选)。 创建停止条件。以上设置完成,进入Job模块创建优化进程,并提交分析。图 12-3 Abaqus/CAE优化模块提交分析后,优化程序基于定义的优化任务及优化进程,开始优化迭代: 准备设计变量(单元密度或者表面节点位置), 更新有限元模型。 执行Abaqus/Standard分析。在优化迭代(设计循环)满足以下条件即终止: 达到设定的最大迭代数 达到设定的停止条件。以上操作步骤可概括为图12-4所示的优化设计SOP(Standard Operating Procedure)。图 12-4 优

12、化设计SOP在图12-4 SOP基础上,还需对关键步(设计响应、目标函数和约束)的设置详加说明。12.2.2 设计响应设置设计响应是从特定的结构分析结果中读取的唯一标量值,随后能够被目标函数和约束引用。要实现设计变量唯一标量值,必须在优化模块中特别运算,比如对体积的运算只能是“总和”,对区域应力的运算只能是“最大值”,由此可知Abaqus优化模块提供了以下两种设计响应操作:最大值或最小值:寻找出选定区域内的节点响应值的最大/最小值,但对应力、接触应力和应变只能是“最大值”。总和:对选定区域内节点的响应值作“总和”。Abaqus优化模块仅允许对体积、质量、惯性矩和重力作“总和”运算。此外,可以定

13、义基于另一个设计响应的响应,也可以定义由几个响应经数学运算而成的组合响应。比如,已分别对两个节点定义了两个位移响应,可再定义两个位移响应的差值作组合响应。下面详细介绍在不同优化情况下,可用或推荐使用的设计响应。1、 基于条件拓扑优化的设计响应针对基于条件的拓扑优化算法,只能使用应变能和体积作为设计响应。1)应变能(Strain energy):即每个单元应变能的总和,可以定义为结构柔度,其是结构整体柔韧性或刚度的一种度量。众所周知,柔度是刚度的倒数,最小化柔度意味着最大化全局刚度。针对线性模型的结构柔度,可以用式(12-1)计算。 (12-1)其中,u是位移矢量;k是全局刚度矩。如果加载条件是

14、集中力或压力,是通过最小化应变能优化出最大的全局刚度;恰恰相反,如果加载的是热场,则通过最大化应变能优化出最大的全局刚度,因为优化修改模型会使结构变软导致应变能下降。此外,如果模型中有特定位移加载,应选择使用最大化应变能。注意:因为拓扑优化是对全部单元考虑总应变能,所以,应变能只能作目标函数,而不能作约束。 Abaqus/CAE操作:切换到优化模块,Task?Condition-based topology task, Design Response?Create: Single-term, Variable: Strain energy。2)体积(Volume):即设计区域的单元体积之和,可以用式(12-2)计算。 (12-2)其中,是单元体积。针对绝大多数优化问题,必须定义体积约束。在对最小化应变能(最大化刚度

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1