1、如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米? 7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。这个圆柱体积减少多少立方厘米? 二、圆锥体积1、选择题。 (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( ) a立方米 3a立方米 9立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米 6立方米 3立方米 2立方米2、判断对错。(1)圆柱的体积相当于圆锥体积的3倍 ()(2)一个圆柱体木料,把它
2、加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1 ()(3)一个圆柱和圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米 ()3、填空(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。4、求下列圆锥体的体积。(1)底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米,高12厘米。5、一个圆锥形沙堆,高是1.5米,底面半径是2米,每
3、立方米沙重1.8吨。这堆沙约重多少吨?6、一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?7、一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?参考答案:(1)底面积0.6平方米,高0.5米 0.6 0.5 = 0.3(立方米) 3.14 3 5 = 141.3(立方厘米)(82)10 = 502.4(立方米)3.14 (25.123.14 2 = 100.48(立方分米)底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的4/7,第一个圆柱的体积
4、也就是是第二个圆柱的4/7。24 4/7 24 = 18(立方厘米) 答:第二个圆柱的的体积比第一个圆柱多18立方厘米。(0.8 2 60 = 60.288(立方米)那么1分钟流过的水有60.288立方米。牙膏体积:1厘米 = 10毫米(5 10 36 = 7065(立方毫米)7065 3.14 (6 10 = 25(次)这样,这一支牙膏只能用25次。1.5米 = 150厘米(4 150 7.8 = 14695.2(克)= 14.6952(千克)15(千克)截下的这段钢材重15千克。 6 = 169.56(立方分米)这个圆柱的体积是169.56立方分米。底面周长:94.23 = 31.4厘米(
5、31.4 3 = 235.5(立方厘米)这个圆柱体积减少235.5立方厘米。 (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( ) (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米(1)圆柱的体积相当于圆锥体积的3倍 ( )1 ( )(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( 6 )立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是(54)立方厘米。圆柱的体积是( 108 )立方厘米,圆锥的体积是( 36 )立方厘米。4 6 = 100.48(立方厘米)3.14(608 = 7536(立方厘米)12
6、= 314(立方厘米)2 1.51.8 = 11.304(吨)这堆沙约重11.304吨。(12.561.2 750 = 3768(千克)这堆小麦重3768千克。 5 4 3 = 60(立方厘米) 60 3 6 = 30(平方厘米)这个圆锥形容器的底面积是30平方厘米小学数学总复习专题讲解及训练(六)主要内容比例的意义和基本性质学习目标1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。
7、3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。考点分析1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。2、表示两个比相等的式子叫做比例。3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。典型例题例1、(把图形按某个比相应放大或缩小,形状没有改变
8、,只是大小变了)A B C(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?分析与解:(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。或者说长方形B和长方形A长的比是2:1,宽的比也是2:1。把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A的长和宽按2:1的比进行放大。(2)把长方形A按1:2的比缩小后为长方形C,长、宽缩小为原来的,图C的长是0.75厘米,图C的宽是0.5厘米。由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。例2、(根据指定的比,将图形按要求放大或缩小)先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?AB(1)按3:2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为61.5 = 9格,宽为41.5 = 6格。(2)按1:2的比将长方形A缩小,即将长方形A的长与宽分别缩小到原来的,那么图C的长为6
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1