1、=()2=()2=,故错误;DEBCADEABC DOECOB ,故正确;ABC的中线BE与CD交于点O。点O是ABC的重心,根据重心性质,BO=2OE,ABC的高=3BOC的高,且ABC与BOC同底(BC)SABC =3SBOC,由和知,SODE=SCOB,SADE=SBOC,故正确.综上,正确.故选C.【点评】本题考查了三角形中位线定理,相似三角形的判定和性质要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方2. (2016四川广安3分)下列说法:三角形的三条高一定都在三角形内有一个角是直角的四边形是矩形有一组邻边相等的平行四边形是菱形两边及一角
2、对应相等的两个三角形全等一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A1个 B2个 C3个 D4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题错误,理由:钝角三角形有两条高在三角形外错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形正确,有一组邻边相等的平行四边形是菱形错误,理由两边及一角对应相等的两个三角形不一定全等错误,理由:一组对边平行,另一组对边相等的四边形不一定
3、是平行四边形有可能是等腰梯形正确的只有,故选A3. (2016四川乐山3分)如图是的外角的平分线,若,则 答案:C解析:考查三角形的外角和定理,角平分线的性质。依题意,得:ACD120,又ACDBA,所以,A120354. (2016湖北襄阳,2,3分)如图,AD是EAC的平分线,ADBC,B=30,则C的度数为()A50 B40 C30 D20【考点】平行线的性质;角平分线的定义;三角形的外角性质 【分析】由ADBC,B=30利用平行线的性质即可得出EAD的度数,再根据角平分线的定义即可求出EAC的度数,最后由三角形的外角的性质即可得出EAC=B+C,代入数据即可得出结论ADBC,B=30E
4、AD=B=30又AD是EAC的平分线,EAC=2EAD=60EAC=B+C,C=EACB=30故选C【点评】本题考查了平行线的性质、三角形外角性质以及角平分线的定义,解题的关键是求出EAC=60本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等或互补的角是关键5. (2016江苏淮安,8,3分)如图,在RtABC中,C=90,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则ABD的面积是()A15 B30 C45 D60【考点】角平分线的性质【分析】
5、判断出AP是BAC的平分线,过点D作DEAB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解由题意得AP是BAC的平分线,过点D作DEAB于E,又C=90DE=CD,ABD的面积=ABDE=154=30故选B【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键6.(2016广东梅州)如图,BCAE于点C,CDAB,B=55,则1等于 A55 B45 C35 D25考点:三角形内角和定理,两直线平行的性质定理。A905535,因为CDAB,所以,1A35。7.(2016广西贺州)一个等腰三角形的两边长分
6、别为4,8,则它的周长为()A12 B16 C20 D16或20【考点】等腰三角形的性质;三角形三边关系【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析当4为腰时,4+4=8,故此种情况不存在;当8为腰时,8488+4,符合题意故此三角形的周长=8+8+4=20【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解8(2016山东省聊城市,3分)如图,ABCD,B=68,E=20,则D的度数为()A28 B38 C48 D88【考点】平行线的性质【分析】根据平行线的性质得到1=B=68,由三角形的外角的性质即可得到结论如图,ABCD,1=B=68E=
7、20D=1E=48【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键二、填空题1(2016黑龙江大庆)如图,在ABC中,A=40,D点是ABC和ACB角平分线的交点,则BDC=110【考点】三角形内角和定理【分析】由D点是ABC和ACB角平分线的交点可推出DBC+DCB=70,再利用三角形内角和定理即可求出BDC的度数D点是ABC和ACB角平分线的交点,有CBD=ABD=ABC,BCD=ACD=ACB,ABC+ACB=18040=140,OBC+OCB=70,BOC=18070=110故答案为:110【点评】此题主要考查学生对角平分线性质,三角形内角和定理,三
8、角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题,熟记三角形内角和定理是解决问题的关键2. (2016湖北鄂州)如图所示,ABCD,EFBD,垂足为E,1=50,则2的度数为( )A. 50 B. 40C. 45 D. 25【考点】平行线的性质,垂直的性质,三角形的内角和定理.【分析】根据平行线的性质:两直线平行同位角相等,得出2=D;再根据垂线的性质和三角形的内角和定理,得出D=40,从而得出2的度数.2=D;又EFBDDEF=90; 在DEF中,D=180DEF1=1809050=402=D=40【点评】本题解题的关键是弄清性质和定理。平行线的性质之一:两直线平行同位角相等;垂直
9、的性质:如果两直线互相垂直,则它们相交所组成的角为直角;三角形的内角和定理:三角形三个内角的和等于180云南)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米(2)转动钢管得到如图2所示的六边形钢架,有A=B=C=D=120,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3【考点】三角形的稳定性【分析】(1)只要证明AEBD,得,列出方程即可解决问题(2)分别求出六边形的对角线并且比较大小,即可解决问题(1
10、)如图1中,FB=DF,FA=FE,FAE=FEA,B=D,FAE=B,AEBD,AE=故答案为(2)如图中,作BNFA于N,延长AB、DC交于点M,连接BD、AD、BF、CF在RTBFN中,BNF=90,BN=,FN=AN+AF=+2=BF=,同理得到AC=DF=ABC=BCD=120MBC=MCB=60M=60CM=BC=BM,M+MAF=180AFDM,AF=CM,四边形AMCF是平行四边形,CF=AM=3,BCD=CBD+CDB=60,CBD=CDB,CBD=CDB=30,M=60MBD=90BD=2,同理BE=232用三根钢条连接顶点使该钢架不能活动,连接AC、BF、DF即可,所用三
11、根钢条总长度的最小值3故答案为3【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型4. (20163分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为21【考点】三角形的面积【分析】根据正方形的性质来判定ABEADG,再根据相似三角形的对应线段成比例求得BE的值;同理,求得ACFADG,AC:AD=CF:DG,即CF=5;然后再来求梯形的面积即可如图,根据题意,知ABEADG,AB:AD=BE:DG,又AB=2,AD=2+6+8=16,GD=8,BE=1,HE=61=5;同理得,ACFADG,AC:AC=2+6=8,AD=16,DG=8,CF=4,IF=64=2;S梯形IHEF=(IF+HE)HI(2+5)6=21;所以,则图中阴影部分的面积为215. (2016四川凉山州4分)如图,ABC的面积为12cm2,点D、E分别是A
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1