ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:191.86KB ,
资源ID:12991189      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12991189.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(普通高中数学科课程纲要补充说明Word文件下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

普通高中数学科课程纲要补充说明Word文件下载.docx

1、高中數學教育的內容,應能區別輕重並掌握主要脈絡,不宜在過於細節的問題上,投入過多的心力。4. 數學是研究各種規律性所發展出的語言,數學思維的模式兼具歸納與演繹。中學課程應較為平衡地呈現歸納與演繹兩種思維模式,而不止著重於演繹。5. 函數、極限與微積分經常可以透過實例、圖形以及比較大小等具體觀察,而直觀地判斷出哪些項是重要的特徵或元素。對於初學者,應重視此類直觀的發展。 本課綱的一個基本理念是要避免形式化的數學學習,要將學生所學的數學與現實世界連結。因此以生活上需要或是其他學科需要的數學內容,形成高中數學的核心內容。從這個基本理念出發,省思前述五項避免形式化教學的看法,本課綱依據以下五項精神而設

2、計。(一)掌握主要脈絡,建構清晰的數學概念。(二)展現以簡馭繁的數學思考方法。(三)在演繹之外,加強歸納思維的訓練,並認識數學模型的意義。(四)以圖形與實例,循序漸進,建構抽象思維的內涵。(五)強調數學的應用,凸顯數學的普遍性與本質性。我們逐項說明如下。(1) 掌握主要脈絡,建構清晰的數學概念每一冊訂有一主題,分別是數學I:函數;數學II:有限數學;數學III:平面坐標與向量;數學IV:線性代數。各主題之脈絡如次頁圖表所示。(2) 展現以簡馭繁的數學思考方法 伸縮與平移:二次函數的標準化(配方法)、指對數的換底(換為以10為底)、二次曲線的標準化(平移+二元配方法)、數據的標準化 對稱性:將三

3、角函數的求值問題,轉化為銳角三角形的邊角關係問題 對數函數:化乘除為加減,化次方為乘除 內積與外積:將角度與面積問題化為可操作的代數式 將排列組合問題都對應到球與籃子的標準模型(三)在演繹之外,加強歸納思維的訓練,並認識數學模型的意義許多重要的公式都先有鋪陳再歸納出一般式,如: 在乘法公式中與多項式章節中,先鋪陳() 的分解,到等比級數時再歸納出一般的公式 在乘法公式中先鋪陳,4) 的展開式,到二項式定理再歸納出一般展開式 發現數列的規律性也強調學生需能夠從數列或樣式中歸納出遞迴關係 為了計算兩向量的夾角,透過餘弦定理歸納出內積的自然定義 為了計算兩向量所張成之平行四邊形面積,透過正弦定理歸納

4、出行列式的自然定義 函數的學習脈絡 有限數學的學習脈絡 平面坐標與向量及線性代數的學習脈絡(四)以圖形與實例,循序漸進,建構抽象思維的內涵本課綱的設計,是提供了充分多的實例後,才給抽象的定義。如 在數與式中,先經過數字操作再轉化為文字與數學式的操作;其他章節如多項式、指對數、三角、坐標幾何中亦皆如此。 邏輯與集合的操作:在數學I的一次不等式中,有如求滿足且的的範圍的問題,自然引進邏輯中且的概念,而區間是集合的概念,但不特別強調集合的抽象概念。又如數學I中的多項不等式,有如求滿足的範圍,這是用到或的概念。先有這些實例,再於數學II的排列組合中才正式引進邏輯與集合的操作。這個集合的抽象定義與操作是

5、為了要處理一般的應用問題。 先有點坐標、平行及位置向量概念,再引進抽象的向量概念。 函數:先複習國中的一次函數和二次函數,然後介紹多項式與指對數函數;這些函數都是直覺地認識。到選修數學中才正式引進抽象的函數定義。 函數圖形的鋪陳,是經過了特徵的辨識及判定兩個歷程。函數的特徵如 對稱點、奇偶性 直線的斜率與截距 二次函數的頂點、凹凸性 已分解多項式函數的特徵,包括零根位置、重根、函數值正負的區間(五)強調數學的應用,凸顯數學的普遍性與本質性 運動學的例子:等速直線運動、等加速直線運動、拋體運動、等速圓周運動,簡諧運動。 指數成長的例子:如人口成長、細胞分裂、放射性元素衰變、藥物代謝、複利等,或以

6、指數方式度量的音量、音階、地震強度、酸鹼值等。 排列組合的例子:球與籃子的標準模型 機率的模型:二項分布、常態分布 聯立線性方程組的應用:線性規劃第4章 教材綱要與附錄之補充說明在教育部97年1月24日頒佈的高級中學課程綱要文件中,數學綱要有兩種附錄,一種列在必修科目肆、教材綱要和選修科目的參、教材綱要的表格內,另一種是必修科目的陸、附錄和選修科目的伍、附錄。這兩種附錄同名異義,發生這種令人混淆的結果,實乃編輯與體例的堅持,我們現在做以下補充說明與定義。教材附錄:在必修科目肆、教材綱要和選修科目的參、教材綱要的表格內所寫的附錄。綱要附錄:在必修科目的陸、附錄和選修科目的伍、附錄。關於教材附錄的

7、補充說明如下: 教材附錄為課文內容之輔助教材,應該編入教科書。 教師應在適當時機將教材附錄配合課文內容授課,不必按頁碼順序在學期末一併講授。 教科書可視其需要,自行增加教材附錄。 教材附錄不應屬於全國性評量範圍。關於綱要附錄的補充說明如下: 綱要附錄為綱要內容之範例與說明,教科書可自由選擇採納與否。1. 關於p.52插值多項式之補充說明除以的餘式,就是通過,的一次插值多項式,這是用簡單多項式在特定區域裡逼近一般多項式函數,此為數學化繁為簡的精神。2. 關於p.52多項式不等式之補充說明解決多項式不等式的問題,可以不需要圖形的輔助,而使用代數方式處理。綱要中特別指定與圖形的連結,主要目的是藉此建

8、立學生對多項式函數圖形特徵(包括零根位置、重根的意涵、函數值的正負)的直觀認識。3. 關於p.52 一次函數圖形之補充說明呈現一次函數之變化率意涵時,函數圖形的x軸及y軸可含單位。4. 關於p.53單項函數圖形之補充說明單項函數的奇偶性與其圖形的對稱性用到與、對y軸及原點的對稱性,此對稱性的學習採直觀的介紹即可。5. 關於p.53透過因式定理證明插值多項式的唯一性之補充說明如果及同為3次多項式,其中為相異的四個數,則證明:令;因為,由因式定理可得將代入得,因此即恆等於0。一般n次插值多項式唯一性的證明,可於介紹數列的符號後,在高三統整複習時再介紹。6. 關於p.54複數四則運算之補充說明複數的

9、乘法直接規定為即可。7. 關於p.56對數表內插法之補充說明以內插法取代表尾差,但學生只需了解內插法的概念即可,避免太多繁複的計算。8. 關於p.56有限項等比級數之補充說明有限項等比級數之求和以處理5.4之應用問題為目的,一般等比數列及級數問題則在數學II之數列與級數中處理。等比級數公式:。9. 關於p.57數列遞迴關係之補充說明由具體實例讓學生由前數項推測下一項,並歸納出一階遞迴關係,如(等差數列)、(等比數列)、重要的一階遞迴關係為等差數列與等比數列。10. 關於p.60數據分析之補充說明本章只談母體的統計分析,不涉及抽樣統計。在數據集中趨勢中,可不再重複國中所學的中位數、四分位數及百分

10、位數。但是如果要介紹,定義需與九年一貫數學課程綱要中的定義一致。11. 關於p.62三角函數的求值之補充說明此部分學習會用到直角坐標系下對x軸、y軸及原點的對稱性,此對稱性的學習採直觀的介紹即可。12. 關於p.63廣義角與參考角之補充說明13. 關於p.64三角函數表之補充說明在三角函數表的查表教學過程中,可複習內插法,但避免繁複的計算。14. 關於p.64兩線關係之補充說明兩線關係之應用,包含外心、反射與鏡射之探討。15. 關於p.69二次曲線之補充說明圓錐曲線有許多問題在微積分的幫助下變得很簡單,如果在高中學習,就難免讓學生記憶許多不必要的公式。在此原則下,選擇省略了切線和光學性質的內容

11、。第5章 教材編寫與審查之補充說明教科書之審查僅應審查內容的正確性,並確認其內容滿足綱要的需求與規範,沒有不足也沒有過度延伸。在正確與符合綱要的前提下,對直觀與嚴謹尺度的拿捏,以及題材之選擇與呈現之方式,應適度尊重編者在數學學習或課程規劃上的設計。避免以審代編而造成風格極為相似的教材。簡言之,數學課本可以不止有一種形式。教科書可以自增附錄。課本附錄的定位為:要教不考。附錄可以配合課本內容教授,不必等到課本全部教完才講附錄。第6章 學習內容之補充說明數學是研究各種規律性所發展出的語言,是人類理性思維的產物,也是自然科學與社會科學的共同基礎;二十世紀計算機的發明,更促成當代各學科進行數量化與數學化

12、的革命。因此,數學對學生未來的發展將日益重要。基於各學科知識發展潮流,聯合國教科文組織亦將數學與語文列為終身學習的基礎,學生於高中時期奠定良好的數學根基,對其個人未來及整體社會之發展均十分的重要。課程綱要之設計,應釐清數學的學習範疇。高中時期所應學習的數學,應界定在由生活上的需要,或是其他學科的需要,所形成的核心內容;也應是大部分學生在循序漸進學習中,得以學會的基礎數學。 就台灣本地的社會變遷而言,過去高中生只有佔同年齡的百分之三十,程度較為整齊,因此過去數學課綱的定位,程度較深,同時採塊狀設計的架構。但即便學生程度較整齊,這個定位仍太純數學,對文、法、商的學生仍太深、太重了些。這是許多老師與

13、家長所反應的狀況。這使得許多學生在一進高中就放棄數學,不僅打擊他們的自信心,也剝奪了他們可能發展的機會。 就國際數學課程的比較而言,數學必修大致到十年級為止,而我國的數學必修則是到十一年級,造成許多非理工性向學生學習一些不適合的數學。若要減輕學生的負擔,需檢討哪些是最核心的題材。有鑑於此,我們對現行高一高二的題材做了適當的調整,訂出必修數學課程學習內容的定位。高一數學(數學I、II)的定位為學習與生活關聯或其他學科需要用到的數學,以建立學生在各學科進行量化分析時所需要的基礎。高一上處理有關連續量的課題,包括由度量連續量所產生的實數,以及描述量與量關係的基本函數,如多項式函數與指數、對數函數。高一下處理有關離散量的課題,包括數列與級數、排列組合、生活中常見的古典機率,以及其他學科常用到的數據分析等。高二數學(數學III、IV)的定位為社會組與自然組學生在學習上所應具備的數學知識,其主題為坐

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1