ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:96.79KB ,
资源ID:12981857      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12981857.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新人教版第十七章勾股定理教案文档格式.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

新人教版第十七章勾股定理教案文档格式.docx

1、 二、合作探究: 让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的

2、图形,其等量关系为:4S+S小正=S大正,即 4ab(ba)2=c2,化简可得 讨论 归纳总结 得出结论 命题1:如果直角三角形的两条直角边长分别为a、b.斜边长为c。那么 三、证明定理 勾股定理的证明方法,达300余种。下面这个古老的精彩的证法,出自我国古代无名数学家之手,同学们,试一试? 已知:如图,在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边S=4abc2 ,右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2 化简可证。这样就证明了命题1的正确性我国把它叫勾股定理4、课堂练习 教

3、材P24 练习第1、2题五、归纳小结: 什么叫勾股定理?怎样证明?六 、作业布置: 教材P28 -习题17.1 第 1题 板书设计: 17.1 勾股定理 (1) 命题1: 证明1 证明2 练习 教学反思: 第2课时 17.1 勾股定理(2) 1、知识与技能:掌握勾股定理的内容,会用勾股定理解决简单的实际问题。2、过程与方法:经历观察猜想归纳验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想. 树立数形结合的思想3、情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感。

4、 勾股定理的简单计算。勾股定理的应用。 勾股定理的灵活运用。实际问题向数学问题的转化。彩色粉笔、三角尺 一、课堂导入: 问题1、什么叫勾股定理? 问题2、如何将实际问题转化为数学问题,之后用勾股定理解决实际问题呢? 注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。 议一议:看书、讨论 归纳解题方法 勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。 三、例题讲解: 例1 (教材P25-例1)一个门框的尺寸如图所示,一块长3 m, 宽2 m的长方形薄木板能否从门框内通过?为什么? 分析:可

5、以看出,木板横着或竖着都不能从门框内通过,只能试试斜着能否通过。门框对角线AC的长度是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板能否通过。 解:在Rt中,根据勾股定理,得, 因为AC大于木板的宽2.2 m,所以木板能从门框内通过。 例2 (教材P25-例2)如图,一架2.6 m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4 m。如果梯子的顶端A沿墙下滑0.5 m,那么梯子底端B也外移0.5 m吗? 解:可以看出,BD=OD-OB. 在Rt中,根据勾股定理,,。 在Rt 所以梯子的顶端A沿墙下滑0.5 m时,梯子底端并不是也外移0.5 m,而是外移0.77m。 四、课堂

6、练习 教材P26-练习1、2 五、归纳小结: 1、用勾股定理计算时,要先画好图形,并标好图形,理清边之间的关系,之后灵活运用勾股定理计算。 2、注意条件的转化;学会如何利用数学 知识、思想、方法解决实际问题。 六、作业布置: 教材P28-习题17.1第2、4题 17.1 勾股定理 (2) 例1 例2 练习第3课时 17.1 勾股定理 (3)教学目标掌握勾股定理的内容,会用勾股定理在数轴上找出表示一个无理数的点。通过对勾股定理的应用,体会勾股定理的文化价值,树立数形结合的思想。教学重点 会用勾股定理在数轴上标出一个表示无理数的点教学难点 在数轴上标出一个表示无理数的点教学准备 彩色粉笔、圆规、三

7、角板 我们知道,所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点并不是都表示有理数,有的表示无理数,那么,怎么在数轴上找出表示无理数的点呢?今天我们就来学习在数轴上找出表示无理数的点。 我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗? 如果能画出长为的线段,就能在数轴上画出表示的点。容易知道,长为的线段是两条直角边的长都为1的直角三角形的斜边。长为的线段能是直角边的长为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,直角边的长为正整数2,3的直角三角形的斜边长为由此,可以依照如下方法在数轴上画出表示如图17.1-10,在数轴上找出表示3的点A,则O

8、A=3,过点A作直线l垂直OA,在l上取点B,使AB=2,以原点O为圆心,以OB为半径作弧,弧与数轴的交点C即为表示三、例题讲解例 利用勾股定理,在数轴上画出表示的点如图四、课堂练习 教材P27-练习第1、2题 五、课堂小结 这节课我们主要学习了利用勾股定理在数轴上画出表示无理数的点的方法。 教材P28-习题17.1第6、7题 17.1 勾股定理 (3) 探究 例 练习第4课时17.2勾股定理的逆定理(1) 掌握勾股定理的逆定理,探究勾股定理的逆定理的证明方法。理解原命题、逆命题、逆定理的概念及关系。经历观察猜想归纳验证的数学发现过程,发展合情推理的能力,通过对勾股定理的逆定理的证明的探究,理

9、解原命题、逆命题、逆定理的概念及关系。体会数形结合和由特殊到一般的数学思想. 3、情感态度与价值观:通过获得成功的经验和克服困难的经历,增进数学学习的信心.树立数形 结合的思想、分类讨论思想。 勾股定理的逆定理,原命题、逆命题、逆定理的概念及关系 勾股定理的逆定理的证明方法, 彩色粉笔、三角板 问题:勾股定理的内容是什么?如果把勾股定理的题设和结论互换,会得到什么命题呢? 怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。 把勾股定理的题设和结论互换,讨论 、交流、得出命题二 命题2:如果三角形的三边长a、b、c满足,那么这

10、个三角形是直角三角形同学们想一想: 命题一 命题二有什么关系? 看书、讨论、归纳 得出互逆命题的定义 我们把题设和结论刚好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 证明命题2:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。已知:在图17.2-2中,的三边长分别为a,b,c,且满足求证:是直角三角形。证明:画A1B1C1,使B1C1=a,A1C1=b,A1C1B1=900,由勾股定理得A1B12=a2+b2,, A1B12=c2,即 A1B1=c A1B1C1, C=C1=900 即时直角三角形 例1 (教材P32例1)判断

11、由线段a,b,c组成的三角形是不是直角三角形: (1)a=15,b=8,c=17; (2)a=13,b=14,c=15.(1)152+82=255+64=289,172=289,152+82=172 根据勾股定理的逆定理,这个三角形是直角三角形。 (2) , 根据勾股定理的逆定理,这个三角形不是直角三角形。 教材P33-练习第1、2题 这节课我们主要学习了勾股定理的逆定理和原命题,逆命题,逆定理的概念,及它们之间的关系 教材P34-习题17.2第1、2题 17.2 勾股定理的逆定理 (1) 命题1 例1 练习命题2第5课时17.2 勾股定理的逆定理(2) 教学目标 1、知识与技能:掌握勾股定理

12、的逆定理,灵活应用勾股定理及逆定理解决实际问题,进一步加深性质定理与判定定理之间关系的认识。 2、过程与方法:经历观察猜想归纳验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想. 灵活应用勾股定理及逆定理解决实际问题。培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。 灵活应用勾股定理及逆定理解决实际问题。勾股定理的逆定理?怎样灵活应用勾股定理及逆定理解决实际问题呢?在前面我们以经学习过,今天我们继续学习,灵活应用勾股定理及逆定理解决实际问题。 例1 (课本P33例2)如图,某港口P位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1