1、线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证知识拓展1利用“同号上,异号下”判断二元一次不等式表示的平面区域对于AxByC0或AxByC0时,区域为直线AxByC0的上方;(2)当B(AxByC)0表示的平面区域一定
2、在直线AxByC0的上方()(3)点(x1,y1),(x2,y2)在直线AxByC0同侧的充要条件是(Ax1By1C)(Ax2By2C)0,异侧的充要条件是(Ax1By1C)(Ax2By2C)0.()(4)第二、四象限表示的平面区域可以用不等式xy0表示()(5)线性目标函数的最优解是唯一的(6)最优解指的是使目标函数取得最大值或最小值的可行解()(7)目标函数zaxby(b0)中,z的几何意义是直线axbyz0在y轴上的截距(题组二教材改编2P86T3不等式组表示的平面区域是()答案B解析x3y60表示直线x3y60及其右下方部分,xy20表示直线xy20的左上方部分,故不等式组表示的平面区
3、域为选项B中的阴影部分3P91T2投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为_(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨)答案解析用表格列出各数据AB总数产品吨数xy资金200x300y1 400场地100y900所以不难看出,x0,y0,200x300y1 400,200x100y900.题组三易错自纠4下列各点中,不在xy10表示的平面区域内的是()A(0,0) B(1,1)C(1,3) D(2,
4、3)答案C解析把各点的坐标代入可得(1,3)不适合,故选C.5(2017日照一模)已知变量x,y满足则z()2xy的最大值为()A. B2 C2 D4答案D解析作出满足不等式组的平面区域,如图阴影部分所示,令m2xy,则当m取得最大值时,z()2xy取得最大值由图知直线m2xy经过点A(1,2)时,m取得最大值,所以zmax()2124,故选D.6已知x,y满足若使得zaxy取最大值的点(x,y)有无数个,则a的值为_答案1解析先根据约束条件画出可行域,如图中阴影部分所示,当直线zaxy和直线AB重合时,z取得最大值的点(x,y)有无数个,akAB1,a1.题型一二元一次不等式(组)表示的平面
5、区域命题点1不含参数的平面区域问题典例 (2017黄冈模拟)在平面直角坐标系中,已知平面区域A(x,y)|xy1,且x0,y0,则平面区域B(xy,xy)|(x,y)A的面积为()A2 B1 C. D. 解析对于集合B,令mxy,nxy,则x,y,由于(x,y)A,所以即因此平面区域B的面积即为不等式组所对应的平面区域(阴影部分)的面积,画出图形可知,该平面区域的面积为21,故选B.命题点2含参数的平面区域问题典例 若不等式组表示的平面区域的形状是三角形,则a的取值范围是()Aa B0a1C1a D00)的最大值为4,则zxmy(m0)的最小值为_答案6解析作出可行域如图阴影部分所示目标函数化
6、简得yx,因为m0,故只可能在A,B处取最大值联立解得B(2,2),解得C(0,2),解得A(2,0),若目标函数zxmy(m0)过点A,z2不符合题意,所以过点B时取得最大值,此时422m,解得m3,zxmy(m0)过点C时,zmin6.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有表示点(x,y)与原点(0,0)的距离,表示点(x,y)与点(a,b)的距离;表示点(x,y)与原点(0,0)连线的斜率,表示点(x,y)与点(a,b)连线的斜率(3)当目标函数中含有参数时,要根据
7、临界位置确定参数所满足的条件跟踪训练 (1)已知实数x,y满足约束条件则z的取值范围为() B. C. D. 解析不等式组所表示的平面区域如图中阴影部分所示,z表示点D(2,3)与平面区域内的点(x,y)之间连线的斜率因为点D(2,3)与点B(8,1)连线的斜率为且C的坐标为(2,2),故由图知,z的取值范围为,故选B.(2)已知x,y满足约束条件若zaxy的最大值为4,则a等于()A3 B2C2 D3解析根据已知条件,画出可行域,如图阴影部分所示由zaxy,得yaxz,直线的斜率ka.当0k1,即1a1,即a1时,由图形可知此时最优解为点(0,0),此时z0,不合题意;当1k0,即0a1时,无选项满足此范围;当k1时,由图形可知此时最优解为点(2,0),此时z2a04,得a2.题型三线性规划的实际应用问题典例 某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解(1)依
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1