ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:1MB ,
资源ID:1296314      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1296314.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(六足机器人的设计.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

六足机器人的设计.docx

1、六足机器人的设计摘 要随着人类探索自然界步伐的不断加速,各应用领域对具有复杂环境自主移动能力机器人的需求,日趋广泛而深入。理论上,足式机器人具有比轮式机器人更加卓越的应对复杂地形的能力,因而被给予了巨大的关注,但到目前为止,由于自适应步行控制算法匮乏等原因,足式移动方式在许多实际应用中还无法付诸实践。另一方面,作为地球上最成功的运动生物,多足昆虫则以其复杂精妙的肢体结构和简易灵巧的运动控制策略,轻易地穿越了各种复杂的自然地形,甚至能在光滑的表面上倒立行走。因此,将多足昆虫的行为学研究成果,融入到步行机器人的结构设计与控制中,开发具有卓越移动能力的六足仿生机器人,对于足式移动机器人技术的研究与应

2、用具有重要的理论和现实意义。六足仿生机器人地形适应能力强,具有冗余肢体,可以在失去若干肢体的情况下继续执行一定的工作,适合担当野外侦查、水下搜寻以和太空探测等对自主性、可靠性要求比较高的工作。关键词:六足机器人,适应能力强,结构设计AbstractWith the increasingly rapid step of human exploration of nature, the demand for robots with autonomous mobility under complex environment has been getting broader and deeper in

3、 more and more application areas. Theoretically, legged robot offers more superior performance of dealing with complicated terrain conditions than that provided by wheeled robot and therefore has been given great concern, however up to now, for the reason of absence of adaptive walk control algorith

4、m, legged locomotion means still could not be put into practice in many practical applications yet. While on the other hand, as the most successful moving creature on the earth, multi-legged insect has facilely managed to surmount various complex natural landforms and even to walk upside down on smo

5、oth surfaces by right of its sophisticated limb structure and dexterous locomotion control strategies. Accordingly, it contains great theoretical and practical significance for the research and application of legged mobile robotics to blend the behavioral research effort of multi-legged insect into

6、the mechanical design and control of walking robot and furthermore to develop hexapod biomimetic robots with more superexcellent mobility. Hexapod robots have strong abilities to adapt the terrain, and have redundancy in the legs, so they can go on carrying out jobs in the case of losing some legs.

7、They are suit for tasks which have strict demands for independency and reliability such as spying in the wild, searching underwater and exploring the outer space. Key words: Hexapod robot, strong abilities,mechanical design摘要 Abstract 第一章 绪论 1.1六足步行机器人的介绍和背景 11.2六足步行机器人的发展现状 11.3步行机器人国内外研究现状 41.3.1国

8、外研究现状 41.3.2国内研究现状 71.4六足步行机器人的现阶段的研究任务 8第二章 六足机器人的机械结构2.1多足机器人的机构类型 102.1.1单连杆式 102.1.2四连杆式(埃万斯机构)112.1.3缩放式 112.1.4关节式 122.2多足步行机器人的运动规划 122.2.1三角步态 122.2.2跟导步态 132.2.3交替步态 132.3设计原理 132.4六足机器人的结构设计152.5舵机的选择 172.5.1舵机概述 172.5.2舵机的选择 172.6腿部机构运动学分析182.6.1 DH坐标系的建立 182.6.2运动学逆解 19第三章 三维模型的建立3.1六足机器

9、人的本体结构的建立 213.2 Solidworks软件介绍 213.3总图223.4三维图23第四章 总结与展望4.1总结 284.2展望 28参考文献 29致 谢30第一章绪论1.1 六足步行机器人的介绍和背景目前,用于在人类不宜、不便或不能进入的地域进行独立探测的机器人主要分两种,一种是由轮子驱动的轮行机器人,另一种是基于仿生学的步行机器人。轮行机器人的不足之处在于对于未知的复杂自然地形,其适应能力很差,而步行机器人可以在复杂的自然地形中较为容易的完成探测任务。因此多足步行机器人有广阔的应用前景,如军事侦察、矿山开采、核能工业、星球探测、消防和营救、建筑业等领域。在步行机器人中,多足机器

10、人是最容易实现稳定行走的。在众多步行机器人中,模仿昆虫以和其他节肢动物们的肢体结构和运动控制策略而创造出的六足机器人是极具代表性的一种。六足机器人与两足和四足步行机器人相比,具有控制结构相对简单、行走平稳、肢体冗余等特点,这些特点使六足机器人更能胜任野外侦查、水下搜寻以和太空探测等对独立性、可靠性要求比较高的工作。国内外对六足机器人进行了广泛的研究,现在已有70多种六足机器人问世,由于六足仿生机器人多工作在非结构化、不确定的环境内,人们希望其控制系统更加灵活,并且具有更大的自主性。同时六足仿生机器人肢体较多,运动过程中需要实现各肢体之间的协调工作,如何方便可靠的实现这种协调,也是六足仿生机器人

11、结构设计研究的一个热点。1.2 六足步行机器人的发展现状早期的六足机器人:随着美国宇航总署对外太空探测计划的不断深入,迫切需要一种可以在未知复杂星球表面执行勘探任务的机器人。由于六足机器人的所具有的这方面优点,使其早在上世纪八十年代就已被列入资助研究计划。其研究成果包括八十年代末的Genghis和九十年代初的Attila和Hannibal。Genghis(如图11左)是由irobot公司研制于80年代,每条腿装有两个电机,使得它可以自由行动,但是因为每腿只有两个自由度,行动有些笨拙。采用递归控制结构,可以使Genghis在复杂路面上行走,包括横越陡峭的地势,爬过高大的障碍,避免掉下悬崖。图11

12、 Genghis和AttilaAttila(如图11右)和Hannibal是由麻省理工学院的移动式遥控机械装置实验室于九十年代早期研制成功。他们是该实验室最早用于自主行星探测的机器人。他们外形相同,只在颜色上有差异,都是Genghis的“后代”。它们在设计上强调模块化子系统结构,各个部分(如头部、腿部和身体)被当作独立的模块来处理。它的设计重量和尺寸受系统复杂程度的制约,为了保证其在太空运行的可靠性,采用了冗余设计:从机械角度看,六条腿行走时,一旦有某条腿失效,余下的腿仍然可以行走;从传感器的角度看,这种冗余可以让来自不同位置的传感器将信号传给主控制器,以更有效地分析地形。当有传感器失效时,剩

13、下传感器仍可以让机器正常运行。九十年代中期的六足机器人:对于跨海登陆作战的部队来说,浅滩地雷无疑是最危险也最头疼的登陆障碍,出于这点考虑,美国麻省理工大学和旗下的is-robot公司得到国防部高级研究计划局的资助,研制了两代浅滩探雷机器人Ariel。Ariel(如图12左)由美国is-robots公司于1995年研制。身体配备多种传感器,对周围环境和自身状况的感知非常灵敏。并配备一套自适应软件,可对一些变化做出积极的反应。它是可以完全翻转的,如果海浪将它打翻,他还可以“底朝上”的继续行走。Robot II(如图12右)是由Case Western Reserve大学,机械和航天工程学院的仿生机器人实验室研制。它的控制器在场外的计算机中。步态控制器基于节肢动物腿部协调工作的机理。通过改变一个简单的速度参数,步态可以从一个缓慢的波动步态转换到快速的三足步态。通过将仿昆虫反射与步态控制器结合,它可以在复杂的路面上行走。图12 Ariel和Robot II近年完成的典型六足机器人:Scor

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1