1、数据挖掘习题题数据挖掘复习题单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision, Recall B. Recall, Precision A. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A
2、. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链5. 什么是KDD? (A) A. 数据挖掘与知识发现 B. 领域知识发现 C. 文档知识发现 D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A) A. 探索性数据分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B) A. 探索性数据
3、分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值 12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55,
4、 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B)A 第一个 B 第二个 C 第三个 D 第四个 13.上题中,等宽划分时(宽度为50),15又在哪个箱子里? (A)A 第一个 B 第二个 C 第三个 D 第四个 14.下面哪个不属于数据的属性类型:(D)A 标称 B 序数 C 区间 D相异 15. 在上题中,属于定量的属性类型是:(C)A 标称 B 序数 C区间 D 相异 16. 只有非零值才重要的二元属性被称作:( C )A 计数属性 B 离散属性 C非对称的二元属性 D 对称属性 17. 以下哪种方法不属于特征选择的标
5、准方法: (D)A嵌入 B 过滤 C 包装 D 抽样 18.下面不属于创建新属性的相关方法的是: (B)A特征提取 B特征修改 C映射数据到新的空间 D特征构造 19. 考虑值集1、2、3、4、5、90,其截断均值(p=20%)是 (C)A 2 B 3 C 3.5 D 5 20. 下面哪个属于映射数据到新的空间的方法? (A)A 傅立叶变换 B特征加权 C 渐进抽样 D维归约 21. 熵是为消除不确定性所需要获得的信息量,投掷均匀正六面体骰子的熵是: (B)A 1比特 B 2.6比特 C 3.2比特 D 3.8比特 22. 假设属性income的最大最小值分别是12000元和98000元。利用
6、最大最小规范化的方法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D)A 0.821 B 1.224 C 1.458 D 0.716 23.假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:(A)A 18.3 B 22.6 C 26.8 D 27.9 24. 考虑值集12 24 33 2 4 55 68 26,其四分位数
7、极差是:(A)A 31 B 24 C 55 D 3 25. 一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年级110人。则年级属性的众数是: (A)A 一年级 B二年级 C 三年级 D 四年级 26. 下列哪个不是专门用于可视化时间空间数据的技术: (B)A 等高线图 B饼图 C 曲面图 D 矢量场图 27. 在抽样方法中,当合适的样本容量很难确定时,可以使用的抽样方法是: (D)A 有放回的简单随机抽样 B无放回的简单随机抽样 C分层抽样 D 渐进抽样28. 数据仓库是随着时间变化的,下面的描述不正确的是 (C)A. 数据仓库随时间的变化不断增加新的数据内容
8、;B. 捕捉到的新数据会覆盖原来的快照;C. 数据仓库随事件变化不断删去旧的数据内容;D. 数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合.29. 关于基本数据的元数据是指: (D)A. 基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息;B. 基本元数据包括与企业相关的管理方面的数据和信息;C. 基本元数据包括日志文件和简历执行处理的时序调度信息;D. 基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息.30. 下面关于数据粒度的描述不正确的是: (C)A. 粒度是指数据仓库小数据单元的详细程度和级别;B. 数据越详细,粒度就越小,级别也
9、就越高;C. 数据综合度越高,粒度也就越大,级别也就越高;D. 粒度的具体划分将直接影响数据仓库中的数据量以及查询质量.31. 有关数据仓库的开发特点,不正确的描述是: (A)A. 数据仓库开发要从数据出发;B. 数据仓库使用的需求在开发出去就要明确;C. 数据仓库的开发是一个不断循环的过程,是启发式的开发;D. 在数据仓库环境中,并不存在操作型环境中所固定的和较确切的处理流,数据仓库中数据分析和处理更灵活,且没有固定的模式32. 在有关数据仓库测试,下列说法不正确的是: (D)A. 在完成数据仓库的实施过程中,需要对数据仓库进行各种测试.测试工作中要包括单元测试和系统测试.B. 当数据仓库的
10、每个单独组件完成后,就需要对他们进行单元测试.C. 系统的集成测试需要对数据仓库的所有组件进行大量的功能测试和回归测试.D. 在测试之前没必要制定详细的测试计划.33. OLAP技术的核心是: (D)A. 在线性;B. 对用户的快速响应;C. 互操作性.D. 多维分析;34. 关于OLAP的特性,下面正确的是: (D)(1)快速性 (2)可分析性 (3)多维性 (4)信息性 (5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4) (5)35. 关于OLAP和OLTP的区别描述,不正确的是: (C)A. OLA
11、P主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同.B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务.C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高.D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的.36. OLAM技术一般简称为”数据联机分析挖掘”,下面说法正确的是: (D)A. OLAP和OLAM都基于客户机/服务器模式,只有后者有与用户的交互性;B. 由于OLAM的立方体和用于OLAP的立方体有本质的区别.C. 基于WEB的OLAM是WEB技术与OLAM技术的结合.D. O
12、LAM服务器通过用户图形借口接收用户的分析指令,在元数据的知道下,对超级立方体作一定的操作.37. 关于OLAP和OLTP的说法,下列不正确的是: (A)A. OLAP事务量大,但事务内容比较简单且重复率高.B. OLAP的最终数据来源与OLTP不一样.C. OLTP面对的是决策人员和高层管理人员.D. OLTP以应用为核心,是应用驱动的.38. 设X=1,2,3是频繁项集,则可由X产生_(C)_个关联规则。A、4 B、5 C、6 D、7 40. 概念分层图是_(B)_图。A、无向无环 B、有向无环 C、有向有环 D、无向有环41. 频繁项集、频繁闭项集、最大频繁项集之间的关系是: (C)A、
13、频繁项集 频繁闭项集 =最大频繁项集B、频繁项集 = 频繁闭项集 最大频繁项集C、频繁项集 频繁闭项集 最大频繁项集D、频繁项集 = 频繁闭项集 = 最大频繁项集42. 考虑下面的频繁3-项集的集合:1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,2,3,4,2,3,5,3,4,5假定数据集中只有5个项,采用 合并策略,由候选产生过程得到4-项集不包含(C)A、1,2,3,4 B、1,2,3,5 C、1,2,4,5 D、1,3,4,543.下面选项中t不是s的子序列的是 ( C )A、s= t=B、s= t=C、s= t=D、s= t=44. 在图集合中发现一组公共子结构,这样的任
14、务称为 ( B )A、频繁子集挖掘 B、频繁子图挖掘 C、频繁数据项挖掘 D、频繁模式挖掘45. 下列度量不具有反演性的是 (D)A、 系数 B、几率 C、Cohen度量 D、兴趣因子46. 下列_(A)_不是将主观信息加入到模式发现任务中的方法。A、与同一时期其他数据对比B、可视化C、基于模板的方法D、主观兴趣度量47. 下面购物篮能够提取的3-项集的最大数量是多少(C)ID 购买项1 牛奶,啤酒,尿布2 面包,黄油,牛奶3 牛奶,尿布,饼干4 面包,黄油,饼干5 啤酒,饼干,尿布6 牛奶,尿布,面包,黄油7 面包,黄油,尿布8 啤酒,尿布9 牛奶,尿布,面包,黄油10 啤酒,饼干A、1 B
15、、2 C、3 D、448. 以下哪些算法是分类算法,A,DBSCAN B,C4.5 C,K-Mean D,EM (B)49. 以下哪些分类方法可以较好地避免样本的不平衡问题, A,KNN B,SVM C,Bayes D,神经网络 (A) 50. 决策树中不包含一下哪种结点,A,根结点(root node) B,内部结点(internal node) C,外部结点(external node) D,叶结点(leaf node) (C)51. 不纯性度量中Gini计算公式为(其中c是类的个数) (A)A, B, C, D, (A)53. 以下哪项关于决策树的说法是错误的 (C)A. 冗余属性不会对
16、决策树的准确率造成不利的影响 B. 子树可能在决策树中重复多次 C. 决策树算法对于噪声的干扰非常敏感 D. 寻找最佳决策树是NP完全问题54. 在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为 (B)A. 基于类的排序方案 B. 基于规则的排序方案 C. 基于度量的排序方案 D. 基于规格的排序方案。 55. 以下哪些算法是基于规则的分类器 (A) A. C4.5 B. KNN C. Na?ve Bayes D. ANN56. 如果规则集R中不存在两条规则被同一条记录触发,则称规则集R中的规则为(C);A, 无序规则
17、B,穷举规则 C, 互斥规则 D,有序规则57. 如果对属性值的任一组合,R中都存在一条规则加以覆盖,则称规则集R中的规则为(B)A, 无序规则 B,穷举规则 C, 互斥规则 D,有序规则58. 如果规则集中的规则按照优先级降序排列,则称规则集是 (D)A, 无序规则 B,穷举规则 C, 互斥规则 D,有序规则59. 如果允许一条记录触发多条分类规则,把每条被触发规则的后件看作是对相应类的一次投票,然后计票确定测试记录的类标号,称为(A) A, 无序规则 B,穷举规则 C, 互斥规则 D,有序规则60. 考虑两队之间的足球比赛:队0和队1。假设65%的比赛队0胜出,剩余的比赛队1获胜。队0获胜
18、的比赛中只有30%是在队1的主场,而队1取胜的比赛中75%是主场获胜。如果下一场比赛在队1的主场进行队1获胜的概率为 (C)A,0.75 B,0.35 C,0.4678 D, 0.573861. 以下关于人工神经网络(ANN)的描述错误的有 (A)A,神经网络对训练数据中的噪声非常鲁棒 B,可以处理冗余特征 C,训练ANN是一个很耗时的过程 D,至少含有一个隐藏层的多层神经网络62. 通过聚集多个分类器的预测来提高分类准确率的技术称为 (A) A,组合(ensemble) B,聚集(aggregate) C,合并(combination) D,投票(voting)63. 简单地将数据对象集划分
19、成不重叠的子集,使得每个数据对象恰在一个子集中,这种聚类类型称作( B ) A、层次聚类 B、划分聚类 C、非互斥聚类 D、模糊聚类64. 在基本K均值算法里,当邻近度函数采用( A )的时候,合适的质心是簇中各点的中位数。 A、曼哈顿距离 B、平方欧几里德距离 C、余弦距离 D、Bregman散度 65.( C )是一个观测值,它与其他观测值的差别如此之大,以至于怀疑它是由不同的机制产生的。 A、边界点 B、质心 C、离群点 D、核心点66. BIRCH是一种( B )。 A、分类器 B、聚类算法 C、关联分析算法 D、特征选择算法67. 检测一元正态分布中的离群点,属于异常检测中的基于(
20、A )的离群点检测。 A、统计方法 B、邻近度 C、密度 D、聚类技术68.( C )将两个簇的邻近度定义为不同簇的所有点对的平均逐对邻近度,它是一种凝聚层次聚类技术。 A、MIN(单链) B、MAX(全链) C、组平均 D、Ward方法69.( D )将两个簇的邻近度定义为两个簇合并时导致的平方误差的增量,它是一种凝聚层次聚类技术。 A、MIN(单链) B、MAX(全链) C、组平均 D、Ward方法70. DBSCAN在最坏情况下的时间复杂度是( B )。 A、O(m) B、O(m2) C、O(log m) D、O(m*log m)71. 在基于图的簇评估度量表里面,如果簇度量为proxi
21、mity(Ci , C),簇权值为mi ,那么它的类型是( C )。 A、基于图的凝聚度 B、基于原型的凝聚度 C、基于原型的分离度 D、基于图的凝聚度和分离度72. 关于K均值和DBSCAN的比较,以下说法不正确的是( A )。 A、K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 B、K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念。 C、K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇。 D、K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇。73. 以下是哪一个聚类算法的算法流程:构造
22、k最近邻图。使用多层图划分算法划分图。repeat:合并关于相对互连性和相对接近性而言,最好地保持簇的自相似性的簇。until:不再有可以合并的簇。( C )。 A、MST B、OPOSSUM C、Chameleon D、JarvisPatrick(JP)74. 考虑这么一种情况:一个对象碰巧与另一个对象相对接近,但属于不同的类,因为这两个对象一般不会共享许多近邻,所以应该选择( D )的相似度计算方法。 A、平方欧几里德距离 B、余弦距离 C、直接相似度 D、共享最近邻75. 以下属于可伸缩聚类算法的是( A )。A、CURE B、DENCLUE C、CLIQUE D、OPOSSUM76.
23、以下哪个聚类算法不是属于基于原型的聚类( D )。 A、模糊c均值 B、EM算法 C、SOM D、CLIQUE77. 关于混合模型聚类算法的优缺点,下面说法正确的是( B )。 A、当簇只包含少量数据点,或者数据点近似协线性时,混合模型也能很好地处理。 B、混合模型比K均值或模糊c均值更一般,因为它可以使用各种类型的分布。 C、混合模型很难发现不同大小和椭球形状的簇。 D、混合模型在有噪声和离群点时不会存在问题。78. 以下哪个聚类算法不属于基于网格的聚类算法( D )。 A、STING B、WaveCluster C、MAFIA D、BIRCH79. 一个对象的离群点得分是该对象周围密度的逆
24、。这是基于( C )的离群点定义。 A概率 B、邻近度 C、密度 D、聚类80. 下面关于JarvisPatrick(JP)聚类算法的说法不正确的是( D )。 A、JP聚类擅长处理噪声和离群点,并且能够处理不同大小、形状和密度的簇。 B、JP算法对高维数据效果良好,尤其擅长发现强相关对象的紧致簇。 C、JP聚类是基于SNN相似度的概念。 D、JP聚类的基本时间复杂度为O(m)。第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术
25、元数据和业务元数据两类。3、数据处理通常分成两大类:联机事务处理和联机分析处理。4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据
26、仓库。8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范
27、的、可理解的、即时的和质量可控制的。3、数据抽取的两个常见类型是静态抽取和增量抽取。静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。4、粒度是对数据仓库中数据的综合程度高低的一个衡量。粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。5、使用星型模式可以从一定程度上提高查询效率。因为星型模式中数据的组织已经经过预处理,主要数据都在庞大的事实表中。6、维度表一般又主键、分类层次和描述属性组成。对于主键可以选择两种方式:一种是采用自然键,另一种是采用代理键。7、雪花型模式是对星型模式维表的进一步层次化和规范化来消除冗余的数据。8、数据仓库中存在不同综合级别的数据。一般把数据分
28、成4个级别:早期细节级、当前细节级、轻度综合级和高度综合级。第三章1、SQL Server SSAS提供了所有业务数据的同意整合试图,可以作为传统报表、在线分析处理、关键性能指示器记分卡和数据挖掘的基础。2、数据仓库的概念模型通常采用信息包图法来进行设计,要求将其5个组成部分(包括名称、维度、类别、层次和度量)全面地描述出来。3、数据仓库的逻辑模型通常采用星型图法来进行设计,要求将星型的各类逻辑实体完整地描述出来。4、按照事实表中度量的可加性情况,可以把事实表对应的事实分为4种类型:事务事实、快照事实、线性项目事实和事件事实。5、确定了数据仓库的粒度模型以后,为提高数据仓库的使用性能,还需要根
29、据拥护需求设计聚合模型。6、在项目实施时,根据事实表的特点和拥护的查询需求,可以选用时间、业务类型、区域和下属组织等多种数据分割类型。7、当维表中的主键在事实表中没有与外键关联时,这样的维称为退化维。它于事实表并无关系,但有时在查询限制条件(如订单号码、出货单编号等)中需要用到。8、维度可以根据其变化快慢分为元变化维度、缓慢变化维度和剧烈变化维度三类。9、数据仓库的数据量通常较大,且数据一般很少更新,可以通过设计和优化索引结构来提高数据存取性能。10、数据仓库数据库常见的存储优化方法包括表的归并与簇文件、反向规范化引入冗余、表的物理分割(分区)。第四章1、关联规则的经典算法包括Apriori算
30、法和FP-growth算法,其中FP-grownth算法的效率更高。2、如果L2=a,b,a,c,a,d,b,c,b,d,则连接产生的C3=a,b,c,a,b,d,a,c,d,b,c,d再经过修剪,C3=a,b,c,a,b,d3、设定supmin=50%,交易集如则L1=A,B,C L2=A,CT1 A B CT2 A CT3 A D T4 B E F第五章1、分类的过程包括获取数据、预处理、分类器设计和分类决策。2、分类器设计阶段包含三个过程:划分数据集、分类器构造和分类器测试。3、分类问题中常用的评价准则有精确度、查全率和查准率和集合均值。4、支持向量机中常用的核函数有多项式核函数、径向基核函数和S型核函数。第六章1、聚类分析包括连续型、二值离散型、多值离散型和混合类型4种类型描述属性的相似度计算方法。2、连续型属性的数据样本之间的距离有欧氏距离、曼哈顿距离和明考斯基距离。3、划分聚类方法对数据集进行聚类时包含三个要点:选种某种距离作为数据样本减的相似性度量、选择评价聚类性能的准则函数和选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值。4、层次聚类方法包括凝聚型和分解型两中层次聚类方法。填空题20分,简答题25分,计算题2个(25分),综合题30分1、数据
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1