ImageVerifierCode 换一换
格式:DOCX , 页数:40 ,大小:744.19KB ,
资源ID:12713341      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12713341.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大连理工大学随机信号实验报告完整.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

大连理工大学随机信号实验报告完整.docx

1、大连理工大学随机信号实验报告完整大连理工大学实验预习报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 姓 名: 学号: 组: _ 实验时间: 2015.12.14 实验室: C221 实验台: 指导教师: 实验I:随机信号的产生、相关分析及其应用实验实验1 均匀分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握均匀分布随机信号的基本产生方法二、实验原理和内容较简单的伪随机序列产生方法是采用数论中基于数环理论的线性同余法(乘同余法、混合同余法),其迭代公式的一般形式为 f(x) = (rx + b) Mod M,其离散形式为 s(n + 1) = rs(n) + b

2、 Mod M。其中,s(n)为 n 时刻的随机数种子,r 为扩展因子,b 为固定扰动项,M 为循环模,Mod M 表示对 M 取模。为保证 s(n)的周期为 M,r 的取值应满足 r = 4k + 1,M 2p,k 与p的选取应满足:r M,r(M-1) + 1 231-1。通常公式中参数常用取值为s(0) =12357,r = 2045, b = 1,M =1048576。 三、实验步骤1. 编程实现产生10000个在(0, 1)区间均匀分布随机数。2. 计算生成随机数的14阶矩,最大值,最小值,频度直方图。实验2 高斯分布随机数的产生,统计特性分析及计算机仿真一、实验目的和要求掌握高斯白噪

3、声的基本产生方法二、实验原理和内容1.变换法2.较简单的高斯白噪声产生方法是基于概率论中的中心极限定理。即无穷多个同分布随机变量之和构成随机变量服从高斯分布。方便起见,可以使用多个均匀分布随机变量之和近似高斯分布随机变量。三、实验步骤1.编程实现产生10000个N(3,4)高斯随机数。2.计算生成随机数的14阶矩,最大值,最小值,频度直方图。实验3 随机信号相关函数计算、相关分析及计算机仿真一、实验目的和要求掌握随机信号相关函数计算、相关分析及实现二、实验原理和内容根据自相关和互相关的定义,自相关,互相关计算随机信号的自相关和互相关。三、实验步骤1.产生高斯随机信号。2.计算其自相关函数。3.

4、计算两个高斯随机信号的互相关函数。大连理工大学实验报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1303姓 名: 李彤 学号: 201383081 组: _ 实验时间: 2015.12.14 实验室: C221 实验台: 指导教师: 实验I:随机信号的产生、相关分析及其应用实验实验1 均匀分布白噪声的生成一、实验目的和要求基于均匀分布伪随机数,掌握均匀分布白噪声典型生成方法。二、实验原理和内容较简单的伪随机序列产生方法是采用数论中基于数环理论的线性同余法(乘同余法、混合同余法),其迭代公式的一般形式为 f(x) = (rx + b) Mod M,其离散形式为 s(n +

5、 1) = rs(n) + b Mod M。其中,s(n)为 n 时刻的随机数种子,r 为扩展因子,b 为固定扰动项,M 为循环模,Mod M 表示对 M 取模。为保证 s(n)的周期为 M,r 的取值应满足 r = 4k + 1,M 2p,k 与p的选取应满足:r M,r(M-1) + 1 231-1。本实验中参数取值为s(1) =12357,r = 2025, b = 1,M =1048576。 三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.编程实现产生10000个在(0, 1)区间均匀分布随机数。2.计算生成随机数的14阶矩,最大值,最小值,频度直方图五、实验

6、数据记录和处理程序如下:M=1048576;b=1;r=2025;s=zeros(1,10000);s(1)=12357;s=zeros(1,10000);for i=2:10000s(i)=mod(s(i-1)*r+b,M);ends=s/M;%均匀分布随机生成10000数据figure,plot(s)%全部数据画线title(全部数据连线)figure,plot(s,.)%全部数据画点title(全部数据画点)%画直方图hist(s,40)title(40个区间)sum=0;for i=1:10000 sum=sum+s(i);%求所有数的总和end;avr=sum/10000;%求所有数

7、的平均数m=zeros(1,4);for i=1:10000 m(1)=m(1)+s(i); %求均值 m(2)=m(2)+s(i)2;% 求二阶矩 m(3)=m(3)+s(i)3;% 求三阶 m(4)=m(4)+s(i)4;% 求四阶endn=zeros(1,4);for i=1:10000 n(1)=n(1)+(s(i)-avr); %求均值 n(2)=n(2)+(s(i)-avr)2;% 求二阶矩 n(3)=n(3)+(s(i)-avr)3;% 求三阶 n(4)=n(4)+(s(i)-avr)4;% 求四阶endm=m/10000;n=n/10000;disp(均值=,num2str(m

8、(1);disp(二阶原点矩=,num2str(m(2);disp(三阶原点矩=,num2str(m(3);disp(四阶原点矩=,num2str(m(4);disp(均值=,num2str(n(1);disp(二阶中心矩=,num2str(n(2);disp(三阶中心矩=,num2str(n(3);disp(四阶中心矩=,num2str(n(4);disp(方差=,num2str(var(s);c=0;d=1;for i=1:10000%求最大值 if cs(i) d=s(i); end;end;cd六、实验结果与分析运行程序,command窗口中显示的结果如下:均值=0.49699二阶原点

9、矩=0.32916三阶原点矩=0.24551四阶原点矩=0.19546均值=-8.3666e-017二阶中心矩=0.08217三阶中心矩=0.00024392四阶中心矩=0.012193方差=0.082179c = 1.0000d = 0实验得到图表如下:图1.1图1.2七、讨论、建议、质疑本实验中编写了生成随机序列的程序,通过设定不同的参数值可以得到不同的随机序列,通过计算多阶原点矩、中心矩和绘制直方图可以更加清楚的看到产生的随机序列的特点,对随机序列的理解更加深刻。实验2 高斯分布白噪声的生成一、实验目的和要求基于均匀分布伪随机数,掌握高斯分布白噪声典型生成方法。二、实验原理和内容1.变换

10、法2.较简单的高斯白噪声产生方法是基于概率论中的中心极限定理。即无穷多个同分布随机变量之和构成随机变量服从高斯分布。方便起见,可以使用多个均匀分布随机变量之和近似高斯分布随机变量。三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.编程实现产生10000个N(3,4)高斯随机数。2.计算生成随机数的14阶矩,最大值,最小值,频度直方图。五、实验数据记录和处理实验程序如下:m=3; n=4; n1=sqrt(n);pi=3.1416; s=zeros(1,10000); for i=1:10000 a=sqrt(-2*log(rand); b=2*pi*rand; s(i)

11、=n1*a*cos(b)+m;%生成10000个N(3, 4) 高斯随机数 endfigure plot(s)sum=0; for i=1:10000 sum=sum+s(i);%求所有数总数 end; avr=sum/10000;%求平均数 m = zeros(1,4); for i = 1 : 10000 m(1) = m(1) + s(i); % 求均值 m(2) = m(2) + s(i)2; % 求二阶矩 m(3) = m(3) + s(i)3; %求三阶 m(4) = m(4) + s(i)4; %求四阶 end n = zeros(1,4); for i = 1 : 10000

12、n(1) = n(1) + (s(i)-avr); %求一阶矩 n(2) = n(2) + (s(i)-avr)2; % 求二阶矩 n(3) = n(3) + (s(i)-avr)3; %求三阶 n(4) = n(4) + (s(i)-avr)4; %求四阶end m=m/10000; n=n/10000; disp(均值 = ,num2str(m(1) ); disp(二阶原点矩 = ,num2str(m(2) ); disp(三阶原点矩 = ,num2str(m(3) ); disp(四阶原点矩 = ,num2str(m(4) ); disp(一阶中心矩= ,num2str(n(1) );

13、 disp(二阶中心矩 = ,num2str(n(2) ); disp(三阶中心矩 = ,num2str(n(3) ); disp(四阶中心矩 = ,num2str(n(4) ); hist(s,100) title(100个区间)%显示频率 c=0;d=1; for i=1:10000%求最大 if cs(i) d=s(i); end; end; cd六、实验结果与分析运行程序,command窗口中显示的结果如下:均值 = 2.993二阶原点矩 = 12.9888三阶原点矩 = 62.522四阶原点矩 = 341.0162一阶中心矩 =-5.8249e-015二阶中心矩 = 4.0306三阶

14、中心矩 = -0.48106四阶中心矩 = 49.8857c = 10.2122d = -4.5628实验得到图像如下:图1.3七、讨论、建议、质疑 本实验和上一个实验类似,但需要用到高斯函数的编写方法,利用循环结构可以求得若干个随机数,通过直方图可以对高斯分布有更直观实际的了解。实验3 随机信号相关函数估计一、实验目的和要求掌握随机信号相关函数计算、相关分析及实现二、实验原理和内容根据自相关和互相关的定义,自相关,互相关计算随机信号的自相关和互相关。三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法4.产生高斯随机信号。5.计算其自相关函数。6.计算两个高斯随机信号的互相

15、关函数。五、实验数据记录和处理实验程序如下:m=3; n=4; n1=sqrt(n);pi=3.1416; Fs=1000; s=zeros(1,10000); for i=1:10000 a=sqrt(-2*log(rand); b=2*pi*rand; s(i)=n1*a*cos(b)+m;%生成10000个N(3, 4) 高斯随机数s end q=zeros(1,10000); for i=1:10000 c=sqrt(-2*log(rand); d=2*pi*rand; q(i)=n*c*cos(d)+m;%生成10000个N(3, 4) 高斯随机数qend figure(1); su

16、bplot(211),plot(s),title(s(n);%画出s的图像 ssubplot(212),plot(q),title(q(n);%画出q的图像 cor1 lag1=xcorr(s); figure(2); plot(lag1/Fs,cor1),title(s的自相关函数);%画出s的自相关函数 cor2 lag2=xcorr(q); figure(3); plot(lag2/Fs,cor2),title(q的自相关函数);%画出q的自相关函数 cor3 lag3=xcorr(s,q); figure(4); plot(lag3/Fs,cor3),title(s与q的互相关函数);

17、%画出s与q的互相关函数六、实验结果与分析运行程序,得到各图像如下:图1.4 s和q的数据图像图1.5 s的自相关函数图1.6 q的自相关函数图1.7 s与q的互相关函数七、讨论、建议、质疑本实验与实验2相似,也要产生高斯随机数,关键在于自相关程序以及互相关程序的编写。通过对自相关以及互相关图像的观察,可以让我们对于自相关以及互相关有更全面的了解。大连理工大学实验预习报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1303姓 名: 李彤 学号: 201383081 组: _ 实验时间: 2015.12.15 实验室: C221 实验台: 指导教师: 实验II:系统对随机信

18、号响应的统计特性分析、功率谱分析及应用实验实验4 随机信号的功率谱分析1一、实验目的和要求掌握直接法估计随机信号功率谱。二、实验原理和内容根据随机信号的Fourier变换结果,计算信号的功率谱。功率谱与频谱关系:三、实验步骤1.生成高斯白噪声的随机信号。2.通过Fourier变换计算高斯白噪声的功率谱,并绘图。实验5 随机信号的功率谱分析方法2一、实验目的和要求掌握间接法估计随机信号功率谱。二、实验原理和内容根据维纳-辛钦定理,计算信号的功率谱。即三、实验步骤1.生成高斯白噪声的随机信号。2.计算高斯白噪声的自相关函数。3.通过计算高斯白噪声自相关函数的Fourier变换,得到噪声功率谱并绘图

19、。实验6系统对随机信号响应的统计特性分析及仿真1一、实验目的和要求掌握时域上系统对随机信号响应的统计特性分析及仿真实现。二、实验原理和内容根据系统卷积性质,计算系统输出信号的统计特性。有如下性质:三、实验步骤1.生成均匀分布的随机信号。2.计算均匀分布随机信号通过平均低通滤波器。3.计算输出信号均值、方差等统计特性。实验7系统对随机信号响应的统计特性分析及仿真2一、实验目的和要求掌握频域上系统对随机信号响应的统计特性分析及仿真实现。二、实验原理和内容根据卷积定理,计算系统输出信号的统计特性。即:三、实验步骤1.生成均匀分布的随机信号。2.频域上计算均匀分布随机信号通过平均低通滤波器。3.计算输

20、出信号均值、方差等统计特性。大连理工大学实验报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1303姓 名: 李彤 学号: 201383081 组: _ 实验时间: 2015.12.15 实验室: C221 实验台: 指导教师: 实验II:系统对随机信号响应的统计特性分析、功率谱分析及应用实验实验4 随机信号的功率谱分析1一、实验目的和要求掌握直接法估计随机信号功率谱。二、实验原理和内容根据维纳-辛钦定理,计算信号的功率谱。即三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.生成高斯白噪声的随机信号。2.通过Fourier变换计算高斯白噪声的功率谱

21、,并绘图。五、实验数据记录和处理程序如下:n=65536;fs=2000;pi=3.14159;t=(0:n-1)/fs;a=random(unif,0,1,1,2)*2*pi;xn=cos(2*pi*30*t+a(1)+3*cos(2*pi*100*t+a(2)+randn(1,n);b1=fft(xn);%b2=cos(2*pi/n)b2=abs(b1).2/n;b3=log(b2(1:n/2);f=(0:n/2-1)*fs/n;figure,plot(f,10*b3);title(功率谱密度);六、实验结果与分析实验得到图表如下:图2.1七、讨论、建议、质疑通过本实验,我掌握了直接估计随

22、机信号功率谱的方法。实验5 随机信号的功率谱分析2一、实验目的和要求掌握间接法估计随机信号功率谱。二、实验原理和内容根据随机信号的Fourier变换结果,计算信号的功率谱。功率谱与频谱关系:三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.生成高斯白噪声的随机信号。2.计算高斯白噪声的自相关函数。3.通过计算高斯白噪声自相关函数的Fourier变换,得到噪声功率谱并绘图。五、实验数据记录和处理程序如下:n=65536;fs=2000;t=(0:n-1)/fs;a=random(unif,0,1,1,2)*2*pi;xn=cos(2*pi*30*t+a(1)+3*cos(

23、2*pi*100*t+a(2)+randn(1,n);b1=xcorr(xn,biased);b2=fft(b1);b3=abs(b2);f=(0:n-1)*fs/n/2;figure,plot(f,10*log(b3(1:n);title(功率谱密度);六、实验结果与分析实验得到图表如下:图2.2七、讨论、建议、质疑本实验与上一个实验结果相同,但是用的方法却不同。通过本实验,我掌握了间接法估计随机信号功率谱。实验6系统对随机信号响应的统计特性分析及仿真1一、实验目的和要求掌握时域上系统对随机信号响应的统计特性分析及仿真实现。二、实验原理和内容根据系统卷积性质,计算系统输出信号的统计特性。有如

24、下性质:三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.生成均匀分布的随机信号。2.计算均匀分布随机信号通过平均低通滤波器。3.计算输出信号均值、方差等统计特性。五、实验数据记录和处理程序如下:m=1048576; b=1; r=2045; x=zeros(1,10000); s(1)=12357; for i=2:10000 s(i)=mod(s(i-1)*r+b,m); end s=s/m; hist(s) r=zeros(1,1001); t=zeros(1,1001); ms=sum(s)/length(s); my=ms*sum(s); for i=1:10

25、000 h(i)=0.9i; endn1=1024; rs=zeros(1,1024); for m=0:(n1-1) for k=0:(n1-1) rs(m+1)=rx(m+1)+s(k+1)*s(k+m+1); endendp=0;rs=rs/1000; figureplot(rs(1:1000) ry=zeros(1,100); for i=0:99 for j=0:99 for k=0:99 a=i+j-k; if(a0) a=-a; end ry(i+1)=ry(i+1)+rx(a+1)*h(i+1)*h(k+1); end endendry=ry/200;figure plot(r

26、y(1:100)均值=2.4725e+03方差=-6.1134e+06六、实验结果与分析实验得到图表如下:图2.3图2.4图2.5七、讨论、建议、质疑通过本实验我对时域上系统对随机信号响应的统计特性分析的了解更加深刻,并掌握了对随机信号响应的仿真。实验7系统对随机信号响应的统计特性分析及仿真2一、实验目的和要求掌握频域上系统对随机信号响应的统计特性分析及仿真实现。二、实验原理和内容根据卷积定理,计算系统输出信号的统计特性。即:三、主要仪器设备微型计算机、Matlab开发环境四、实验步骤与操作方法1.生成均匀分布的随机信号。2.频域上计算均匀分布随机信号通过平均低通滤波器。3.计算输出信号均值、

27、方差等统计特性。五、实验数据记录和处理程序如下:n=500;xt=random(norm,0,1,1,n);ht=fir1(500,0.3 0.4);hw=fft(ht,2*n);rxx=xcorr(xt,biased);sxx=abs(fft(xt,2*n).2)/(2*n);hw2=abs(hw).2;syy=sxx.*hw2;ryy=fftshift(ifft(syy);w=(1:n)/n;t=(-n:n-1)/n*(n/20000);subplot(4,1,1);plot(w,abs(sxx(1:n);subplot(4,1,2);plot(w,abs(hw2(1:n);subplot

28、(4,1,3);plot(w,abs(syy(1:n);subplot(4,1,4);plot(t,ryy);六、实验结果与分析实验得到图表如下:图2.6七、讨论、建议、质疑通过本实验我对频域上系统对随机信号响应的统计特性分析的了解更加深刻,并掌握了对随机信号响应的仿真。大连理工大学实验预习报告学院(系):信息与通信工程学院 专业: 电子信息工程 班级: 电子1303姓 名: 李彤 学号: 201383081 组: _ 实验时间: 2015.12.17 实验室: C219 实验台: 指导教师: 实验III:通信信号统计特性分析、仿真实现及应用实验8 Hilbert变换算法实现1一、实验目的和要求掌握Hilbert变换的时域实现。二、实验原理和内容根据信号的卷积性质,进行Hilbert变换。Hilbert变换等效系统单位响应为三、实验步骤生成正弦波信号,卷积得到Hilbert变换信号。生成余弦波信号,卷积得到Hilbert 变换信号。实验9 Hilbert变换算法实现2一、实验目的和要求掌握Hilbert变换的频域实现。二、实验原理和内容根据信号的卷积

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1