1、四边形压轴题专练四边形较难题专练类推问题1已知在矩形ABCD中,ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EPPD)(1)如图1,若点F在CD边上(不与D重合),将DPF绕点P逆时针旋转90后,角的两边PD、PF分别交射线DA于点H、G求证:PG=PF; 探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PGPF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由2已知四边形ABCD是菱形,AB=
2、4,ABC=60,EAF的两边分别与射线CB,DC相交于点E,F,且EAF=60(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且EAB=15时,求点F到BC的距离3已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当OFE=30时,如图2
3、、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明4如图,在正方形ABCD中,点E为对角线AC上的一点,连接BE,DE(1)如图1,求证:BCEDCE;(2)如图2,延长BE交直线CD于点F,G在直线AB上,且FG=FB求证:DEFG;已知正方形ABCD的边长为2,若点E在对角线AC上移动,当BFG为等边三角形时,求线段DE的长(直接写出结果,不必写出解答过程)5在四边形ABCD中,对角线AC、BD相交于点O,设锐角AOB=,将DOC按逆时针方向旋转得到DOC(0旋转角90)连接AC、BD,AC与BD相交于点M(1)当四边形ABCD为
4、矩形时,如图1求证:AOCBOD(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2猜想此时AOC与BOD有何关系,证明你的猜想;探究AC与BD的数量关系以及AMB与的大小关系,并给予证明6在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移ADE,使点D移动到点C,得到BCF,过点F作FGBD于点G,连接AG,EG(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是 ,位置关系是 ;(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;(3)解决问题:若点E在线段DC的
5、延长线上,且AGF=120,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度7如图1,正方形ABCD中,AC是对角线,等腰RtCMN中,CMN=90,CM=MN,点M在CD边上,连接AN,点E是AN的中点,连接BE(1)若CM=2,AB=6,求AE的值;(2)求证:2BE=AC+CN;(3)当等腰RtCMN的点M落在正方形ABCD的BC边上,如图2,连接AN,点E是AN的中点,连接BE,延长NM交AC于点F请探究线段BE、AC、CN的数量关系,并证明你的结论8问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45,试判断BE、EF、FD之间的数量关系【
6、发现证明】小聪把ABE绕点A逆时针旋转90至ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论【类比引申】如图(2),四边形ABCD中,BAD90,AB=AD,B+D=180,点E、F分别在边BC、CD上,则当EAF与BAD满足 关系时,仍有EF=BE+FD【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD已知AB=AD=80米,B=60,ADC=120,BAD=150,道路BC、CD上分别有景点E、F,且AEAD,DF=40(1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)旋转问题1已知正方形ABC
7、D的边长为4,一个以点A为顶点的45角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF设CE=a,CF=b(1)如图1,当EAF被对角线AC平分时,求a、b的值;(2)当AEF是直角三角形时,求a、b的值;(3)如图3,探索EAF绕点A旋转的过程中a、b满足的关系式,并说明理由2如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且MAN始终保持45不变(1)求证:=;(2)求证:AFFM;(3)请探索:在MAN的旋转过程中,当BAM等于多少度时,FMN=BAM?写出你的探索结论,并加以证明 3
8、如图,AD为等腰直角ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图所示)求证:BGGE;设DG与AB交于点M,若AG:AE=3:4,求的值4如图,在ABC中,BAC=90,AB=AC,点E在AC上(且不与点A,C重合),在ABC的外部作CED,使CED=90,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF(1)请直接写出线段AF,AE的数量关系 ;(2)将CED绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明
9、你的结论;(3)在图的基础上,将CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图写出证明过程;若变化,请说明理由5如图1,ABC是等腰直角三角形,BAC=90,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BDCF成立(1)当ABC绕点A逆时针旋转(090)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当ABC绕点A逆时针旋转45时,如图3,延长BD交CF于点H求证:BDCF;当AB=2,AD=3时,求线段DH的长6如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CFA
10、DCF成立(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:ADCF(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD=时,求线段CG的长7已知,正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边长分别交CB、DC(或它们的延长线)于点M、N,AHMN于点H(1)如图,当MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系: ;(2)如图,当MAN绕点A旋转到BMDN时,(1)中发现的AH与AB的数量关系还成立吗?
11、如果不成立请写出理由,如果成立请证明;(3)如图,已知MAN=45,AHMN于点H,且MH=2,NH=3,求AH的长动点最值问题1正方形ABCD边长为4cm,点E,M分别是线段AC,CD上的动点,连接DE并延长,交正方形ABCD的边于点F,过点M作MNDF于H,交AD于N(1)如图1,若点M与点C重合, 求证:DF=MN;(2)如图2,若点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t0);当点F是边AB的中点时,求t的值;连结FM,FN,当t为何值时MNF是等腰三角形(直接写出t值)2正方形ABCD的边长为3,点E,F分
12、别在射线DC,DA上运动,且DE=DF连接BF,作EHBF所在直线于点H,连接CH(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值3如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF(1)求证:HEA=CGF;(2)当AH=DG=2时, 求证:菱形EFGH为正方形;
13、(3)设AH=x,DG=2x,FCG的面积为y,试求y的最大值4如图1,在菱形ABCD中,AB=6,tanABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角(=BCD),得到对应线段CF(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于 ;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角(=BCD),得到对应线段CG在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式 5如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QOBD,垂足为O,连接OA、OP(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=SOPB,BP=x(0x2),求y与x之间的函数关系式,并求出y的最大值
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1