ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:29.61KB ,
资源ID:12476100      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12476100.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSYS热分析指南.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

ANSYS热分析指南.docx

1、ANSYS热分析指南ANSYS热分析指南(第一章)发表时间:2007-10-19 作者: 来源: 安世亚太 第一章简介1.1热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。1.2ANSYS中的热分析ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、ANSYS/FLOTRAN四种产品中支持热分析功

2、能。ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅ANSYS Theory Reference。ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。1.2.1对流热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。1.2.2辐射ANSYS提供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单

3、元(SURF151-2D,或SURF152-3D)在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。1.2.3特殊的问题除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。例如,可使用热质点单元MASS71模拟随温度变化的内部热生成。1.3热分析的类型ANSYS支持两种类型的热分析:1.稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。2.瞬态热分析则计算在随时间变化的条件下,温度的分布和热特性。1.4耦合场分析AN

4、SYS中可与热分析进行耦合的方式有热结构、热-电磁等。耦合场分析可以使用ANSYS中的矩阵耦合单元,或者在独立的物理环境中使用序惯荷载耦合。有关耦合场分析的详细描述,请参阅ANSYS Coupled-Field Analysis Guide。1.5关于菜单路径和命令语法在本指南中,您将会看到相关的ANSYS命令及其等效的菜单路径。这些参考的命令仅仅包括命令名,因为并不总是需要指定所有的参数,而且不同的参数组合会有不同的作用。有关ANSYS命令的更多的叙述,请参考ANSYS Commands Reference。菜单路径将近可能完整得列出。对于多数情况,选择菜单就能够完成所需要的功能;但还有一些

5、情况,选择文中所示菜单后会弹出一个菜单或是对话框,由此定义其他的选项来执行一些特定的任务。第二章 基础知识2.1符号与单位项目国际单位英制单位ANSYS代号长度mft时间ss质量Kglbm温度oFTEMP力Nlbf能量(热量)JBTU功率(热流率)WBTU/secHEAT热流密度W/m2BTU/sec-ft2HFLUX生热速率W/m3BTU/sec-ft3HGEN导热系数W/m-BTU/sec-ft-oFKXX对流系数 W/m2-BTU/sec-ft2-oFHF密度Kg/m3lbm/ft3DENS比热J/Kg-BTU/lbm-oFC焓J/m3BTU/ft3ENTH2.2传热学经典理论回顾热分析

6、遵循热力学第一定律,即能量守恒定律。对于一个封闭的系统(没有质量的流入或流出):式中:热量作功系统内能 系统动能 系统势能对大多数工程传热问题:;通常不考虑做功:,则;对于稳态热分析:,即流入的热量等于流出的热量;对于瞬态热分析:,即流入流出的热传递速率等于系统内能的变化。2.3热传递的方式2.3.1热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循傅立叶定律:,式中为热流密度(W/m2),为导热系数(W/m-),负号表示热量流向温度降低的方向。2.3.2热对流如果系统的净流滤为0,即流入体统的热量加上系统自身产生的热量等于流出系统的

7、热量:,则系统热稳态。在稳态热分析中,任一节点的温度不随时间变化。稳态热分析的能量平衡方程为(以矩阵形式表示):式中:为传导矩阵,包含热系数、对流系数及辐射和形状系数;为节点温度向量;为节点热流率向量,包括热生成;ANSYS利用模型几何差数、材料热性能参数以及所施加的边界条件,生成、及。2.5瞬态传热瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):式中:为传导矩阵,包含热系数、对流系数及辐射和形状系数;为比热矩阵,考虑系统内能的增加;为节点温度向量;为温度对时间的导数;

8、为节点热流率向量,包括热生成;2.6线性与非线性如果有下列情况产生,则为非线性热分析:材料热性能随温度变化,如K(T),C(T)等;边界条件随温度变化,如h(T)等;含有非线性单元;k,1,5!建模k,2,6k,3,12k,4,12,0.25k,5,6,0.25k,6,6,1k,7,5,1k,8,5,0.25a,1,2,5,8a,2,3,4,5a,8,5,6,7esize,0.125!定义网格尺寸amesh,all!划分网格eplotfinish/solu!热分析求解nsel,s,loc,x,5!选择内表面节点sf,all,conv,1,450!施加对流边界条件nsel,s,loc,x,6,1

9、2!选择外表面节点nsel,r,loc,y,0.25,1nsel,a,loc,x,12sf,all,conv,0.25,70!施加对流边界条件nsel,all/pse,conv,hcoef,1nplotsolve!求解生成PIPE_FIN.rth文件finish/post1plnsol,temp!得到温度场分布finish/prep7 !重新进入前处理etchg,tts!将热单元转换为结构单元plane42keyopt,1,3,1!定义轴对称特性mp,ex,1,28e6!定义弹性模量mp,nuxy,1,0.3!定义泊松比mp,alpx,1,0.9e-5!定义热膨胀系数finish/solu!进

10、入结构分析求解nsel,s,loc,y,0!选择对称边界nsel,a,loc,y,1dsym,symm,y!定义对称条件nsel,s,loc,x,5!选择内表面sf,all,pres,1000!施加压力边界条件nsel,all/pbc,all,1/psf,pres,1nplottref,70!设定参考温度ldread,temp,rth!读入PIPE_FIN.rth节点温度/pbc,all,0/psf,pres,0分布/pbf,temp,1eplotsolve!求解finish/post1,plnsol,s,eqv!得到等效应力finish7.4直接法热应力分析实例7.4.1问题描述两个同心圆管

11、之间有一个小间隙,内管中突然流入一种热流体,求经过3分钟后外管表面的温度。已知条件:管材弹性模量:2E11N/m2热膨胀系数:5E-41/ oF泊松比:0.3导热系数:10W/m.oC密度:7880Kg/m3比热:500J/Kg.oC外管外半径:0.131 m外管内半径:0.121 m内管外半径:0.12m内管内半径:0.11m流体温度:300oC流体与内管内壁对流系数:300W/m2.oC内、外管接触热导:0.1W/oC7.4.2命令流方法/filename,contact_thermal/title,contact_thermal example/prep7et,1,13,4,1! 选择直

12、接耦合单元PLANE13,单元自由度为ux,uy,temp! 定义为轴对称et,2,48! 定义结构接触单元keyopt,2,1,1! 设定接触单元的相应选项keyopt,2,2,1keyopt,2,7,1r,2,2e11,0,0.0001,0.1! 定义接触单元实常数mp,ex,1,2e11! 定义管材结构及热属性mp,alpx,1,5e-5mp,kxx,1,10mp,dens,1,7880mp,c,1,500rect,0.11,0.12,0,0.02! 建模rect,0.121,0.131,0,0.02amesh,allnsel,s,loc,x,0.11! 将内管内壁的X方向位移及温度耦合

13、cp,1,ux,allcp,2,temp,allnsel,s,loc,x,0.12! 将内管外壁的X方向位移及温度耦合cp,3,ux,allcp,4,temp,allnsel,s.loc,x,0.121! 将外管内壁的X方向位移及温度耦合cp,5,ux,allcp,6,temp,allnsel,s,loc,x,0.131! 将外管外壁的X方向位移及温度耦合cp,7,ux,allcp,8,temp,allnsel,s,loc,y,0.02! 将内管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0,0.12cp,9,uy,allnsel,s,loc,y,0.02! 将外管顶部节点的Y方向

14、位移及温度耦合nsel,r,loc,x,0.121,0.131cp,10,uy,allnsel,s,loc,x,0.12! 创建接触单元cm,cont,nodensel,s,loc,x,0.121cm,targ,nodetype,2real,2gcgen,cont,targ,3/soluantype,trans! 瞬态分析tunif,20! 初始平均温度tref,20! 参考温度sfl,4,conv,300,300! 内管内壁对流边界sfl,6,conv,10,20! 外管外壁对流边界nsel,s,loc,y,0! 约束所有底边单元的Y向位移d,all,uy,0time,180! 载荷步时间deltime,10,5,15! 定义时间步长outres,all,allkbc,1autots,on! 自动时间步长allselsolve! 求解/post1plnsol,temp! 显示温度分布plnsol,s,eqv! 显示等效应力

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1