ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:171.47KB ,
资源ID:12468252      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12468252.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考专题复习练习及解析弹簧问题.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高考专题复习练习及解析弹簧问题.docx

1、高考专题复习练习及解析弹簧问题弹簧问题专题一、弹簧弹力大小问题弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能的)。不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1F2一定等大反向。弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。如果弹簧的一端和其它物体脱离接触,或处于拉伸

2、状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。)例1质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天花板下,开始系统处于静止。下列说法中正确的是A若突然剪断细线,则剪断瞬间P、Q的加速度大小均为gB若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和gC若突然剪断弹簧,则剪断瞬间P、Q的加速度大小

3、均为gD若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0分析与解:剪断细线瞬间,细线拉力突然变为零,弹簧对P的拉力仍为3mg竖直向上,因此剪断瞬间P的加速度为向上2g,而Q的加速度为向下g;剪断弹簧瞬间,弹簧弹力突然变为零,细线对P、Q的拉力也立即变为零,因此P、Q的加速度均为竖直向下,大小均为g。选C。例2如图所示,小球P、Q质量均为m,分别用轻弹簧b和细线c悬挂在天花板下,再用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为=37?。下列判断正确的是A剪断d瞬间P的加速度大小为06gB剪断d瞬间P的加速度大小为075gC剪断e前c的拉力大小为08m

4、gD剪断e后瞬间c的拉力大小为125mg分析与解:剪断d瞬间弹簧b对小球的拉力大小和方向都未来得及发生变化,因此重力和弹簧拉力的合力与剪断前d对P的拉力大小相等,为075mg,因此加速度大小为075g,水平向右;剪断e前c的拉力大小为125mg,剪断e后,沿细线方向上的合力充当向心力,因此c的拉力大小立即减小到08mg。选B。二、临界问题两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。“恰好分开”既可以认为已经分开,也可以认为还未分开。认为已分开,那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。同时利用这两个结论,就能分析出当时弹簧

5、所处的状态。特点:1接触;2还没分开所以有共同的速度和加速度;3弹力为零。这种临界问题又分以下两种情况:1仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。 例3如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力F压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。这时,若突然撤去压力F,A、B将被弹出且分离。下列判断正确的是A木块A、B分离时,弹簧的长度恰等于原长B木块AB分离时,弹簧处于压缩状态,弹力大小等于B的重力C木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重力D木块A、B分离时,弹簧的长度可能大于原长分析与解:以A

6、为对象,既然已分开,那么A就只受重力,加速度竖直向下,大小为g;又未分开,A、B加速度相同,因此B的加速度也是竖直向下,大小为g,说明B受的合力为重力,所以弹簧对B没有弹力,弹簧必定处于原长。选A。此结论与两物体质量是否相同无关。 例4如图所示,轻弹簧左端固定在竖直墙上,右端与木块B相连,木块A紧靠木块B放置,A、B与水平面间的动摩擦因数均为。用水平力F向左压A,使弹簧被压缩一定程度后,系统保持静止。若突然撤去水平力F,A、B向右运动,下列判断正确的是 AA、B一定会在向右运动过程的某时刻分开B若A、B在向右运动过程的某时刻分开了,当时弹簧一定是原长C若A、B在向右运动过程的某时刻分开了,当时

7、弹簧一定比原长短D若A、B在向右运动过程的某时刻分开了,当时弹簧一定比原长长分析与解:若撤去F前弹簧的压缩量很小,弹性势能小于弹簧恢复原长过程A、B克服摩擦阻力做的功,那么撤去F后,A、B虽能向右滑动,但弹簧还未恢复原长A、B就停止滑动,没有分离。只要A、B在向右运动过程的某时刻分开了,由于分离时A、B间的弹力为零,因此A的加速度是aA=g;而此时A、B的加速度相同,因此B的加速度aB=g,即B受的合力只能是滑动摩擦力,所以弹簧必然是原长。选B。例5如图所示,轻弹簧的一端固定在地面上,另一端与木块B相连,木块A放在木块B上,两木块质量均为m,在木块A上施有竖直向下的力F,整个装置处于静止状态。

8、(1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动到最高点时,B对A的弹力有多大?(2)要使A、B不分离,力F应满足什么条件?【点拨解疑】力F撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最高点与最低点的对称性来求解,会简单的多(1)最高点与最低点有相同大小的回复力,只有方向相反,这里回复力是合外力在最低点,即原来平衡的系统在撤去力F的瞬间,受到的合外力应为F/2,方向竖直向上;当到达最高点时,A受到的合外力也为F/2,但方向向下,考虑到重力的存在,所以B对A的弹力为。(2)力F越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称性最高点时,A、B间虽接触但无弹力

9、,A只受重力,故此时恢复力向下,大小位mg。那么,在最低点时,即刚撤去力F时,A受的回复力也应等于mg,但根据前一小题的分析,此时回复力为F/2,这就是说F/2=mg。则F=2mg因此,使A、B不分离的条件是F2mg。2除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。那么两个物体分离时弹簧必然不一定是原长。(弹簧和所连接的物体质量不计分离时是弹簧的原长,但质量考虑时一定不是弹簧的原长,)可看成连接体。例6一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图所示。现让木板由静止开始以加速度a(ag匀加速向下移动。求经过多长

10、时间木板开始与物体分离。分析与解:设物体与平板一起向下运动的距离为x时,物体受重力mg,弹簧的弹力F=kx和平板的支持力N作用。据牛顿第二定律有:mg-kx-N=ma得N=mg-kx-ma当N=0时,物体与平板分离,所以此时因为,所以。例7如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=02s内F是变力,在02s以后F是恒力,g=10m/s2,则F的最小值是 ,F的最大值是 。 分析与解:因为在t=02s内F是变力,在t=02s以后F是

11、恒力,所以在t=02s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在002s这段时间内P向上运动的距离:x=mg/k=04m因为,所以P在这段时间的加速度当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N当P与盘分离时拉力F最大,Fmax=m(a+g)=360N例8一弹簧秤的秤盘质量m1=15kg,盘内放一质量为m2=105kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图9所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0

12、2s内F是变化的,在02s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)分析与解:因为在t=02s内F是变力,在t=02s以后F是恒力,所以在t=02s时,P离开秤盘。此时P受到盘的支持力为零,由于盘的质量m1=15kg,所以此时弹簧不能处于原长,这与例2轻盘不同。设在0_02s这段时间内P向上运动的距离为x,对物体P据牛顿第二定律可得: F+N-m2g=m2a对于盘和物体P整体应用牛顿第二定律可得:令N=0,并由述二式求得,而,所以求得a=6m/s2当P开始运动时拉力最小,此时对盘和物体P整体有Fmin=(m1+m2)a=72N当P与盘分离时拉力F最大,Fmax=m2(a+g

13、)=168N例9如图所示,质量均为m=500g的木块A、B叠放在一起,轻弹簧的劲度为k=100N/m,上、下两端分别和B与水平面相连。原来系统处于静止。现用竖直向上的拉力F拉A,使它以a=20m/s2的加速度向上做匀加速运动。求:经过多长时间A与B恰好分离?上述过程中拉力F的最小值F1和最大值F2各多大?刚施加拉力F瞬间A、B间压力多大?分析与解:设系统静止时弹簧的压缩量为x1,A、B刚好分离时弹簧的压缩量为x2。kx1=2mg,x1=010m。A、B刚好分离时,A、B间弹力大小为零,且aA=aB=a。以B为对象,用牛顿第二定律:kx2-mg=ma,得x2=006m,可见分离时弹簧不是原长。该

14、过程A、B的位移s=x1-x2=004m。由,得t=02s分离前以A、B整体为对象,用牛顿第二定律:F+kx-2mg=2ma,可知随着A、B加速上升,弹簧形变量x逐渐减小,拉力F将逐渐增大。开始时x=x1,F1+kx1-2mg=2ma,得F1=2N;A、B刚分离时x=x2,F2+kx2-2mg=2ma,得F2=6N以B为对象用牛顿第二定律:kx1-mg-N=ma,得N=4N三、弹簧振子的简谐运动轻弹簧一端固定,另一端系一个小球,便组成一个弹簧振子。无论此装置水平放置还是竖直放置,在忽略摩擦阻力和空气阻力的情况下,弹簧振子的振动都是简谐运动。弹簧振子做简谐运动过程中机械能守恒。水平放置的弹簧振子

15、的总机械能E等于弹簧的弹性势能Ep和振子的动能Ek之和,还等于通过平衡位置时振子的动能(即最大动能),或等于振子位于最大位移处时弹簧的弹性势能(即最大势能),即E=Ep+Ek=Epm=Ekm简谐运动的特点之一就是对称性。振动过程中,振子在离平衡位置距离相等的对称点,所受回复力大小、位移大小、速度大小、加速度大小、振子动能等都是相同的。例10如图所示,木块P和轻弹簧组成的弹簧振子在光滑水平面上做简谐运动,O为平衡位置,BC为木块到达的最左端和最右端。有一颗子弹竖直向下射入P并立即留在P中和P共同振动。下列判断正确的是 A若子弹是在C位置射入木块的,则射入后振幅不变,周期不变B若子弹是在B位置射入

16、木块的,则射入后振幅不变,周期变小C若子弹是在O位置射入木块的,则射入后振幅不变,周期不变D若子弹是在O位置射入木块的,则射入后振幅减小,周期变大分析与解:振动能量等于振子在最远点处时弹簧的弹性势能。在B或C射入,不改变最大弹性势能,因此不改变振动能量,也不改变振幅;但由于振子质量增大,加速度减小,因此周期增大。振动能量还等于振子在平衡位置时的动能。在O点射入,射入过程子弹和木块水平动量守恒,相当于完全非弹性碰撞,动能有损失,继续振动的最大动能减小,振动能量减小,振幅减小;简谐运动周期与振幅无关,但与弹簧的劲度和振子的质量有关。子弹射入后,振子质量增大,因此周期变大。选D。例11如图所示,轻弹

17、簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。小球下降阶段下列判断中正确的是A在B位置小球动能最大B在C位置小球加速度最大C从AC位置小球重力势能的减少等于小球动能的增加D从BD位置小球重力势能的减少小于弹簧弹性势能的增加分析与解:AC小球受的合力一直向下,对小球做正功,动能增加;CD小球受的合力一直向上,对小球做负功,使动能减小,因此在C位置小球动能最大。从B到D小球的运动是简谐运动的一部分,且C为平衡位置,因此在CD间必定有一个B?点,满足BC=B?C,小球在B?点的速度和加速度

18、大小都和在B点时相同;从C到D位移逐渐增大,回复力逐渐增大,加速度也逐渐增大,因此小球在D点加速度最大,且大于g。从AC小球重力势能的减少等于小球动能的增加和弹性势能之和,因此重力势能的减少大于动能的增大。从BD小球重力势能减小,弹性势能增加,且B点动能大于D点动能,因此重力势能减少和动能减少之和等于弹性势能增加。选D。4、弹性势能问题 机械能包括动能、重力势能和弹性势能。其中弹性势能的计算式高中不要求掌握,但要求知道:对一根确定的弹簧,形变量越大,弹性势能越大;形变量相同时,弹性势能相同。因此关系到弹性势能的计算有以下两种常见的模式:1利用能量守恒定律求弹性势能。例12如图所示,质量分别为m

19、和2m的AB两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用水平力F将B向左压,静止后弹簧储存的弹性势能为E。若突然撤去F,那么A离开墙后,弹簧的弹性势能最大值将是多大?分析与解:A离开墙前A、B和弹簧组成的系统机械能守恒,弹簧恢复原长过程,弹性势能全部转化为B的动能,因此A刚离开墙时刻,B的动能为E。A离开墙后,该系统动量守恒,机械能也守恒。当A、B共速时,系统动能最小,因此弹性势能最大。A刚离开墙时刻B的动量和A、B共速时A、B的总动量相等,由动能和动量的关系Ek=p2/2m知,A刚离开墙时刻B的动能和A、B共速时系统的动能之比为3:2,因此A、B共速时系统的总动能是2E/3,这

20、时的弹性势能最大,为E/3。2利用形变量相同时弹性势能相同。例13如图所示,质量均为m的木块A、B用轻弹簧相连,竖直放置在水平面上,静止时弹簧的压缩量为l。现用竖直向下的力F缓慢将弹簧再向下压缩一段距离后,系统再次处于静止。此时突然撤去压力F,当A上升到最高点时,B对水平面的压力恰好为零。求:F向下压缩弹簧的距离x;压力F在压缩弹簧过程中做的功W。分析与解:如图、分别表示未放A,弹簧处于原长的状态、弹簧和A相连后的静止状态、撤去压力F前的静止状态和撤去压力后A上升到最高点的状态。撤去F后,A做简谐运动,状态A处于平衡位置。状态弹簧被压缩,弹力等于A的重力;状态弹簧被拉长,弹力等于B的重力;由于

21、A、B质量相等,因此、状态弹簧的形变量都是l。由简谐运动的对称性,、状态A到平衡位置的距离都等于振幅,因此x=2l到过程压力做的功W等于系统机械能的增加,由于是“缓慢”压缩,机械能中的动能不变,重力势能减少,因此该过程弹性势能的增加量E1=W+2mgl;到过程系统机械能守恒,初、末状态动能都为零,因此弹性势能减少量等于重力势能增加量,即E2=4mgl。由于、状态弹簧的形变量相同,系统的弹性势能相同,即E1=E2,因此W=2mgl。五、解决弹簧问题的一般方法解决与弹簧相关的问题,一定要抓住几个关键状态:原长、平衡位置、简谐运动的对称点。把这些关键状态的图形画出来,找到定性和定量的关系,进行分析。

22、例14如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地面时D的速度的大小是多少?已知重力加速度为g。分析与解:画出未放A时弹簧的原长状态和挂C后刚好使B离开地面的状态。以上两个状态弹簧的压缩量和伸长量分别为x1=m1g/k和x2=m2g

23、/k,该过程A上升的高度和C下降的高度都是x1+x2,且AC的初速度、末速度都为零。设该过程弹性势能的增量为E,由系统机械能守恒:m1g(x1+x2)-m3g(x1+x2)+E=0将C换成D后,A上升x1+x2过程系统机械能守恒:m1g(x1+x2)-(m1+m3)g(x1+x2)+E+(2m1+m3)v2/2=0由以上两个方程消去E,得第二轮重点突破(2)弹簧专题1.(广东)图中a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态。A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉

24、伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态2(04吉林理综)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:中弹簧的左端固定在墙上,中弹簧的左端受大小也为F的拉力作用,中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有 Al2l1 Bl4l3 Cl1l3 Dl2l43如图所示,a、b两根轻弹簧系住一球,球处于静止状态。撤去弹簧a的瞬间,小球的加速度大小为a=2.5m/S2,若弹簧a不动,则撤去弹簧b的瞬间小球

25、加速度可能为:A. 7.5m/S2,方向竖直向上. B. 7.5m/S2,方向竖直向下. aC. 12.5m/S2,方向竖直向上. D. 12.5m/S2,方向竖直向下. b4如图所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O,将弹簧压缩,弹簧被压缩了x0时,物块的速度变为零。从物块与弹簧接触开始,物块的加速度的大小随下降的位移x变化的图象,可能是( )5如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧,

26、在这过程中下面木块移动的距离为A.m1g/k1 B.m2g/k1C.m1g/k2 D.m2g/k26如图5所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动,在运动过程中,对A、B两物体及弹簧组成的系统,正确的说法是(整个过程中弹簧不超过其弹性限度) A.动量始终守恒; B.机械能始终守恒; C.当弹簧伸长到最长时,系统的机械能最大; D.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物速度为零。7、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度

27、系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是 ,F的最大值是 。8为了测量小木板和斜面的滑动摩擦系数,某同学设计了如下的实验,在小木板上固定一个弹簧秤,(弹簧秤的质量不计),弹簧秤下吊一个光滑的小球。将木板连同小球一起放在斜面上,如图所示,用手固定住木板时,弹簧秤的示数为F1,放手后木板沿斜面下滑,稳定时弹簧秤的示数为F2,测的斜面的倾角为 ,由测量的数据可以算出小木板跟斜面间的滑动摩擦系数是多少? ) 9、质量为m的物块用压缩的轻质弹簧卡在竖直放置的矩形匣子中,

28、如图14所示,在匣子的顶部和底部都装有压力传感器,当匣子随升降机以a=20ms2的加速度竖直向上做匀减速运动时,匣子项部的压力传感器显示的压力为60N,底部的压力传感器显示的压力为100N(g=10ms2) (1)当匣子顶部压力传感器的示数是底部传感器的示数的一半时,试确定升降机的运动情况。(2)要使匣子顶部压力传感器的示数为零,升降机沿竖直方向的运动情况可能是怎样的?10如图所示,物体B和物体C用劲度系数为k的轻弹簧连接并竖直地静置于水平地面上,此时弹簧的势能为E。这时一个物体A从物体B的正上方由静止释放,下落后与物体B碰撞,碰撞后A与B立刻一起向下运动,但A、B之间并不粘连。已知物体A、B

29、、C的质量均为M,重力加速度为g,忽略空气阻力。求当物体A从距B多大的高度自由落下时,才能使物体C恰好离开水平地面?11、如图所示,A、B两滑环分别套在间距为1m的光滑细杆上,A和B的质量之比为1:3,用一自然长度为1m的轻弹簧将两环相连,在A环上作用一沿杆方向的、大小为20N的拉力F,当两环都沿杆以相同的加速度运动时,弹簧与杆夹角为53(cos53=0.6)。求弹簧的劲度系数k为多少?12在绝缘水平面上放一质量m=2.010-3kg的带电滑块A,所带电荷量q=1.010-7C.在滑块A的左边l=0.3m处放置一个不带电的绝缘滑块B,质量M=4.010-3kg,B与一端连在竖直墙壁上的轻弹簧接

30、触(不连接)且弹簧处于自然状态,弹簧原长S=0.05m.如图所示,在水平面上方空间加一水平向左的匀强电场,电场强度的大小为E=4.0105N/C,滑块A由静止释放后向左滑动并与滑块B发生碰撞,设碰撞时间极短,碰撞后两滑块结合在一起共同运动并一起压缩弹簧至最短处(弹性限度内),此时弹性势能E0=3.210-3J,两滑块始终没有分开,两滑块的体积大小不计,与水平面间的动摩擦因数均为=0.5,g取10m/s2。求:(1)两滑块碰撞后刚结合在一起的共同速度v;(2)两滑块被弹簧弹开后距竖直墙壁的最大距离s.13(8分)如图所示,质量均为m的两个小球A、B套在光滑水平直杆P上,整个直杆被固定于竖直转轴上

31、,并保持水平,两球间用劲度系数为k,自然长度为L的轻质弹簧连接在一起,左边小球被轻质细绳拴在竖直转轴上,细绳长度也为L,现欲使横杆AB随竖直转轴一起在水平面内匀速转动,其角速度为,求当弹簧长度稳定后,细绳的拉力和弹簧的总长度为多大?14(16分)在纳米技术中需要移动或修补原子,必须使在不停地做热运动(速率约几百米每 秒)的原子几乎静止下来且能在一个小的空间区域内停留一段时间,为此已发明了“激光致冷”技术,若把原子和入射光子分别类比为一辆小车和一个小球,则“激光致冷”与下述的模型很类似。 一辆质量为m的小车(一侧固定一轻弹簧),如图15所示,以速度V0水平向右运动,一动量大小为P,质量可以忽略的小球水平向左射人小车并压缩弹簧至最短,接着被锁定一 定时间t,再解除锁定使小球以大小相同的动量P水平向右弹出,紧接着不断重复上述 过程,最终小车将停下来。设地面和车厢均为光滑,除锁定时间t外,不计小球在小车上 运动和弹簧压缩、伸长的时间,求: (1)小球第一次入射后再弹出时,小车的速

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1