ImageVerifierCode 换一换
格式:DOCX , 页数:42 ,大小:1,001.08KB ,
资源ID:12152035      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12152035.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(马氏体转变.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

马氏体转变.docx

1、马氏体转变 14 马氏体转变钢经奥氏体化后,快速冷却,抑制其扩散性分解,在较低温度下发生的转变,为马氏体 转变。马氏体转变是钢件热处理强化的主要手段之一。因此,马氏体转变理论的研究与热处 理实践有着十分密切的关系。早在战国时期, 人们已经知道可以用淬火, 即将钢加热到高温后淬入水或油中急冷的方 法提高钢的硬度。经过淬火的钢制宝剑可以“销铁如泥” 。但是在当时,对于淬火能提高钢 的硬度的本质还不清楚。直到十九世纪未期,人们才知道,钢在加热与冷却过程中,内部相 组成发生了变化, 因而引起了钢的性能的改变。 为了纪念在这一发展过程中作出杰出贡献的 德国冶金学家 Adolph Marte ns (阿道

2、夫,马顿斯),法国著名的冶金学家 Osmo nd (奥斯门德) 建议将钢经淬火所得高硬度相称为马氏体, 并因此而将得到马氏体相的转变过程称为马氏体 转变。马氏体的英文名称为 -Martensite,常用M表示。由于钢在生产上得到了最广泛的应用以及马氏体转变最先在钢的淬火过程中发展,因 此,在十九世纪未,二十世纪初对马氏体的研究,主要局限于研究钢中的马氏体转变及转变 所得的马氏体。二十世纪三十年代,人们用X射线结构分析方法测得钢中马氏体是 C溶于a -Fe而形成的过饱和固溶体。马氏体中的固溶碳即原奥氏体中的固溶碳。因此,曾一度认为所谓马氏体 即碳在中a -Fe的过饱和间隙固溶体。对于马氏体转变的

3、研究, 初期着重于了解马氏体转变与钢中其它转变的不同点, 正是由 于观察到了一系列不同于其它转变的特点, 曾经有人认为马氏体转变与其它转变不同, 是一 个由快冷造成的内应力场所引起的切变过程。四十年代后,在 Fe-Ni、Fe-Mn 合金以及许多有色金属及合金中也发现了马氏体转变。 不仅观察到了冷却过程中发生的马氏体转变,还观察到了加热过程中所发生的马氏体转变。 新观察到的马氏体转变的特征和钢中马氏体转变的特征相似, 基于这一新的发现, 人们不得不把马氏体的定义修正为: 凡相变的基本特征属于马氏体型的产物统称为马氏体。 六十年代 以来,由于电子显微镜技术的发展,揭示了马氏体的精细结构,使人们对马

4、氏体的成分、组 织结构和性能之间的关系有了比较清晰的概念,对马氏体的形成规律也有了进一步的了解。在此期间, 在了解了马氏体转变和其它转变不同点的基础上又进一步了解了马氏体转变 和其它转变的共同点。 由于确定了马氏体转变与一般固态转变之间的一系列共同特征, 使我们有可能从固态相变的一般规律来考虑马氏体转变, 而在马氏体转变进行的条件中去寻求马 氏体转变与一般固态转变不同点的原因。近年来,由于实验技术的进一步发展,使我们对马氏体的结构及马氏体转变的特征,又 有了进一步的了解, 对许多现象的认识也有了很大的进步, 并因此而推动了热处理新工艺及 新材料的发展。其中,最为脍炙人口的是,在热弹性马氏体的基

5、础上发展起来的形状记忆合 金。但是,我们应当看到,转变时成分不发生改变,仅仅是点阵发生改组,这种貌似简单的 马氏体转变是相当复杂的。目前还有许多问题很不清楚,还有待于人们进一步研究。一、马氏体转变的主要特征马氏体转变是在低温下进行的一种转变。对于钢来说,此时不仅铁原子已不能扩散,就是碳原子也难以扩散。故马氏体转变具有一系列不同于加热转变以及珠光体转变的特征。 里只提出几个最重要的转变特征,其它特征将在以后各有关的章节内讨论。(一)马氏体转变的非恒温性必须将奥氏体以大于临界冷却速度的冷却速度过冷到某一温度才能发生马氏体转变。 也就是说马氏体转变有一上限温度。这一温度称为马氏体转变的开始温度,也称

6、为马氏体点, 用Ms表示。不同材料的Ms是不同的。当奥氏体被过冷到 Ms点以下任一温度,不需经过孕育,转变立即开始,且以极大的速度进行,但转变很快停止,不能进行到终了如下图 1所示。 为了使转变能继续进行,必须降低温度,即马氏体转变是温度的函数,如图 2所示,而与等温时间与无关,或者说,马氏体量只取决于冷却所达到的温度。 当温度降到某一温度以下时,图1 马氏体等温转变曲线虽然马氏体转变未达到 100%,但转变已不 能进行。该温度称为马氏体转变终了点, 用 Mf表示(图2)。如某钢的 Ms高于室温而 Mf低于室温,则冷却至室温时还将保留一图3爆发式转变时的马氏体转变量与温度的关系定数量的奥氏体,

7、称为残余奥氏体。如果继续冷至室温以下,未转变的奥氏体将继续转变为马氏体直到Mf点。深冷至室温以下在生产上称为冷处理。 马氏体的这一特征称为非恒温性。对于某些Ms点低于0C的Fe-Ni-C等合金来说,当过冷至Ms点以下时,马氏体可能爆 发形成,即最初形成的马氏体有可能促发一定数量的奥氏体转变为马氏体, 未转变的奥氏体样必须在继续冷却的情况下才能转变,且有可能再次爆发形成。在此情况下,马氏体转变量 与温度的关系如图 3所示。也还有少数 Ms点低于0C的合金,女口 Fe-Ni-Mn , Fe-Ni-Cr以及高碳高锰钢等可以发生 马氏体等温度转变。其动力学特征与珠光体等温转变很相似,也有“ C”型曲线

8、(图4),不同点是等温转变量不多,转变不能进行到底。(二)马氏体转变的切变共格与表面浮凸现象 马氏体转变时能在预先磨光的试样表面上形成 有规则的表面浮凸,这表明马氏体转变是通过奥氏 体的均匀切变进行的。奥氏体中已转变为马氏体的 部分发生了宏观切变而使点阵发生改组,且带动靠 近界面的还未转变的奥氏体也随之而发生切应变(图5a),故在磨光表面出现部分突起部分凹陷的浮凸现象。如转变前在试样磨光表 面刻一直线划痕 STS,则转变后在表面产生浮凸时该直线既不弯曲,也不折断,而是形成 了折线ST,TS,如图5b)。这也表明马氏体转变是通过切变进行的,直线划痕在界面不折 断、在晶内不弯曲表明转变时,界面两侧

9、的马氏体和奥氏体既未发生相对转动,该界面也未 发生畸变,故该界面被称为不变平面。在新形成的马氏体片内的线段 TT,仍保持直线,只是长度有所改变。这表明,原奥氏体中的任一平面在转变成马氏体后仍为一平面。在转变时 所发生的具有这一特点的应变只能是均匀应变, 意即任何一点的位移与该点距不变平面的距 离成正比的应变。 这种在不变平面上所产生的均匀应变被称为不变平面应变。 图 6 是三种不变平面应变,底面均为不变平面,第一种为简单的膨胀或压缩;第二种为切变;第三种既有 膨胀又有切变,钢中马氏体转变即属于这一种。显然,界面上的原子的排列规律既同于马氏体, 也同于奥氏体, 这种界面称为共格界面。 但不变平面

10、可以是相界面,如孪晶面,也可以不是相界面。如图 5 的中脊面为不变平面,但不是相界面,界面是 ABML 及 DCNO 。为维持这种界面关系,界面两侧的奥氏体与马氏体 必定要产生弹性切变。这种依靠弹性切变维持的共格称为第二类共格。共格界面的界面能较非共格界面小, 但由于靠切变维持的第二类共格在界面两侧都有弹 性切应变,故又增加了一部分应变能。(三)马氏体转变的无扩散性马氏体转变只有点阵改组而无成分的改变。 如钢中的奥氏体转变为马氏体时, 只是点阵 由面心立方通过切变改组成体心立方(或体心正方) ,而马氏体的成分与奥氏体的成分完全 一样, 且碳原子在马氏体与奥氏体中相对于铁原子保持不变的间隙位置。

11、 这一特征称为马氏体转变的无扩散性。无扩散并不是说转变时原子不发生移动,马氏体转变时出现浮凸说明原子不仅有移动, 而且产生了肉眼能观察到的移动。所谓无扩散,指的是母相以均匀切变方式转变为新相。相 界向母相推移时, 原子以协作方式通过界面由母相转变为新相, 类似于排成方阵的士兵以协作方阵变换成棱形。因此这样的转变被形象地称为军队式转变( military transformation )。此时每一个原子均相对于相邻原子以相同的矢量移动, 且移动距离不超过原子间距, 移动后仍 保持原有的近邻关系。 但如图 5及图 6所示, 相隔距离较远的原子之间的相对位移可以为肉 眼所观察到。扩散性相变则与此不同

12、,相界面向母相推移时,原子以散乱方式由母相转移到 新相,每一个原子移动的方向都是任意的,相邻原子的相对位移超过原子间距,原子的相邻 关系遭到破坏。 加热转变及珠光体转变时新相通过大角晶界的迁移长入与其无位向关系的母 相即属于这种转变。这样的转变被形象地称为平民式转变( civilian transformation )。以下三个试验证实了,马氏体转变的无扩散性。1、 一引起具有有序结构的合金,发生马氏体转变时后,有序结构不发生变化。2、 碳钢中马氏体转变前后 C 的浓度没有变化,奥氏体和马氏体的成分一致,仅发生晶 格改组。而且,碳原子在铁原子中的间隙位置保持不变。3、 马氏体可以在相当低的温度

13、范围内进行,并且转变速度极快。例如, Fe-C和Fe-Ni 合金中,在-20-196 C之间,每片马氏体的形成时间约为 5X IO-55 x 10-7S。甚至在4K时, 形成速度仍然很高。 在这样低的温度下, 原子扩散速度极小, 转变已不可能以扩散方式进行。(四) 马氏体转变的位向关系及惯习面1、 马氏体转变的晶体学特点是新相与母相之间存在着一定的位向关系。因为马氏体转 变进行时,原子不需要扩散,只作有规则的很小距离的迁动,转变过程中新相和母相界面始 终保持切变共格。因此,转变后两相之间的位向关系仍然保持着。2、 马氏体转变的不变平面被称为惯习面,以平行于此面的母相的晶面指数表示。有时 不变平

14、面,即惯习面也就是新旧相的界面。(五) 马氏体转变的可逆性在某些铁合金中,奥氏体冷却时转变为马氏体,重新加热时,已形成的马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。 一般将马氏体直接向奥氏体转变称为逆转变。逆转变开始点用 As表示,逆转变终了点用 Af表示。通常 As温度比Ms温度为高。在Fe-C合金中,目前尚未直接观察到马氏体的逆转变。一般认为,由于含碳马氏体是C在a -Fe中的过饱和固溶体,加热时极易分解,因此在尚未加热到 As点时,马氏体就已经分解了,所以得不到马氏体的逆转变。因此有人认为,如果以极快的速度加热,使马氏体在 未分解前即已加热到 As以上,则有可能发生逆转

15、变。曾有人以 3000C/S的速度加热进行研究,只得到了一些初步的结果,尚不能完全证实合金 Fe-C中马氏体逆转变的存在。还可以列举一些其他的马氏体相变特点。但是,应该说明,马氏体相变区别于其他相变 的最基本的特点只有两个:一是相以共格切变方式进行,二是相变的无扩散性。所有其他特 点均可由这两个基本特点派生出来。有时,在其他类型相变中,也会看到个别特点与马氏体 相变特点相类似,比如在贝氏体转变中也会观察到表面浮凸现象, 但这并不能说明它们也是马氏体相变。 厂 二、马氏体转变的晶体学 2 (一)马氏体的晶体结构图7奥氏体与马氏体点阵常数和碳含量的关系1、马氏体的晶格类型Fe-C合金的马氏体是 C

16、在中的过饱和间隙 固溶体。X-射线衍射分析证实,马氏体具有体 心正方点阵(点阵常数之间的关系为:a=b c, a = 3 = y =90 c/a-称为正方度)。人们通过X- 射线衍射分析法,测定不同碳含量马氏体的点 阵常数,得出c、a及c/a与钢中碳含量成线性 关系,由图7可见,随钢中碳含量升高,马氏 体点阵常数c增大,a减小,正方度c/a增大。 图中为奥氏体的点阵常数。马氏体的点阵常 数和钢中碳含量的关系也可用下列公式表示:c aoa aoc/ a 1式中 ao为a -Fe的点阵常数, ao=2.861?;a =0.116 0.002 ;3 =0.113 0.002 ;丫 =0.046 0.

17、001 ;P马氏体的碳含量(重量百分数)。显然,系数a和3的数值确定着 C原子在a -Fe点阵中引起的局部畸变。上式所表示的马氏体点阵常数和碳含量的关系,长期以来,曾为大量研究工作所证实, 并且发现这种关系对合金钢也是适用的。 马氏体的正方度c/a,甚至已被成功地作为马氏体 碳含量定量分析的依据。2、碳原子在马氏体点阵中的位置及分布O子子 M图8奥氏体a)与马氏体b)的点阵结构及溶于其中的碳原子所在的位置C原子在中a -Fe可能存在的位置是铁原 子构成体心立方点阵的八面体间隙位置中心。 在单胞中就是各边中央和面心位置, 如图8所示。体心立方点阵的八面体间隙是一扁八面 体,其长轴为.2 a,短轴

18、为c。根据计算,a -Fe中的这个间隙在短轴方向上的半径仅 0.19?, 而C原子的有效半径为 0.77?。因此,在平衡状态下,C在a -Fe中的溶解度极小(0.006% )。一般钢中马氏体的碳含量远远超过这个数值。因此,势必引起点阵发生畸变。图 9中只指出了 C原子可能占据的位置,而并非所有位置上都有 C原子存在。这些位置可以分为三组,图9 C原子在马氏体点阵中的可能位置构成的亚点阵每组构成一个八面体,C原子分别占据着这些八面体的顶点,通常把这三种结构称之为亚点 阵。图中a)称为第三亚点阵,C原子在c轴上;b)称为第二亚点阵,C原子在b轴上;c)称为第一亚点阵,C原子在a轴上;如果C原子在三

19、个亚点阵上分布的机率相等, 即无序分 布,则马氏体应为立方点阵。 事实上,马氏体点阵是体心立方的, 可见C原子在三个亚点阵 上的分布机率是不相等的,可能优先占据其中某一个亚点阵,而呈现为有序分布。通常假设马氏体点阵中的 C原子优先占据八面体间隙位置的第三亚点阵,即 C原子平行于001方向排列。结果使 c轴伸长,a轴缩短,使体心立方点阵的a -Fe变成体心正方点阵的马氏体,研究表明,并不是所有的 C原子都占据第三亚点阵的位置, 通过中子辐照分析的结论是近80%的C原子优先占据第三亚点阵,而 20%的C原子分布其他两个亚点阵,即在马氏体中,C原子呈部分有序分布。(二)马氏体的异常正方度人们研究马氏

20、体时发现,对许多钢中“新形成的马氏体” ,正方度与碳含量的关系并不符合上述公式。有的与公式相比较,正方度相当低,称为异常低正方度。有的与公式相比较, 正方度相当高,称为异常高正方度。异常低正方度马氏体的点阵是正交对称的,即 az b。而异常高正方度马氏体的点阵是正方的,即 a=b。并且发现异常正方度与公式计算的正方度的偏着随钢C含量升高而增大。人们由此推测,马氏体的异常正方度现象可能与 C原子在马氏体点阵中的某种行为有关。在普通碳钢新形成的马氏体中及其他具有异常低正方度的新形成马氏体中, C原子也都是部分无序分布的。正方度越低,则无序分布程度越大,有序分布程度越小。只有异常高正 方度马氏体中,

21、C原子才接近全部占据八面体间隙的第三亚点阵。但是,计算发现,即使全 部C原子占据第三亚点阵,马氏体的正方度也不能达到实验中所测得的异常正方度。因此, 有人认为,在某些钢中马氏体的异常正方度还与合金元素的有序分布有关。按上述模型,我们不难解释,具有异常低正方度的新形成马氏体, 因其C原子是部分无序分布的,因而正方度异常低。正因为部分无序分布,所以有相当数量的碳原子分布在第一、 第二亚点阵上,当它们在这两个亚点阵上的分布机率不等时,必引起 az b,而形成了正交点阵。在温度回升到室温时, C原子重新分布,有序程度增大,故正方度增大,而正交对称性逐渐减小,以至消失。因此,新形成马氏体的正方度变化,

22、是C原子在马氏体点阵中重新分布引起的。这个过程就是 C原子在马氏体点阵中的有序 -无序转变。这个转变的动力是 C原子只在八面体间隙位置的一个亚点阵上分布时具有最小的弹性能。这与理论计算结果符 合。近几年发现经中子流、电子流、 -射线辐照的马氏体有正方度的可逆变化。辐照后,正方度下降,随后在室温时效几个月, 正方度复又上升。 这种可逆变化可以被认为是 C原子有 序-无序转变过程存在的有力证明。马氏体经辐照后,由于缺陷密度升高,使 C原子发生重新分布,部分C原子离开第三亚点阵向点阵缺陷处偏聚, 因而正方度下降。时效时,由于点阵缺陷的密度下降,C原子又逐渐回到第三亚点阵上,因此正方度又逐渐上升。(三

23、)惯习面与位向关系1、惯习面马氏体晶粒的外形可以有多种形态, 或呈透镜片状,或呈板条状。实验证明,马氏体转变不仅新相和母相的一定的 位向关系,而且马氏体的平面或界面常常和母相点阵的某一 晶面接近平行,其差在几度之内,我们称这个面为惯习面, 并且以平行惯习面的母相晶面指数来表示,如图 10所示。此惯习面即前面所说的马氏体转变的不变平面。 对于透镜片状马氏体来说,即马氏体片的中脊面。钢中马氏体的惯习面 随奥氏体的碳含量及马氏体的形成温度而异,常见的有三 种:(111) Y、(225) Y、(259) Y。含碳量小于 0.6%时,为(111) 丫;含碳量在 0.61.4%之间,为(225) 丫;含碳

24、量高于氏体形成温度下降,惯习面有向高指数变化的趋势,故对同一成分的钢,也可能出现两种惯习面,如先形成的马氏体惯习面( 225) y为,而后形成的马氏体惯习面为( 259) y2、位向关系马氏体转变的晶体学特征是, 马氏体与母相之间存在着一定的位向关系,这是由马氏体转变的切变机构所决定的。 在钢中已经观察到的位向关系有 KS关系、西山关系和 GT关系。(1)K S关系(库尔久莫夫和萨克斯关系)库尔久莫夫和萨克斯用 X-射线结构分析方法测得含1.4%碳的碳钢中的马氏体与奥氏体之间存在着下列位向关 系,称为K S关系。110 “,/ 111 Y “,/ Y按照这样的位向关系,马氏体在母相中可以有 2

25、4个不同的取向。如图11所示,在每个111 Y面上,马氏体可能(3) G T (Greniger Troiano )关系(格伦宁格 特赖雅诺)Greniger和Troiano精确测量了 Fe-0.8%C-22%Ni合金的奥氏体与马氏体的位向, 结果得出,二者之间的位向接近 K S关系,但略有偏差,称为 GT关系:110 “,/ 111 Y 差 1 “,/ Y 差 2 三、马氏体的组织形态淬火获得马氏体组织,是钢件达到强韧化的重要基础。由于钢的种类、成分不同,以及 热处理条件的差异,会使淬火马氏体的形态和内部精细结构及形成显微裂纹的倾向性等发生 很大变化。这些变化对马氏体的机械性能影响很大。因此

26、,掌握马氏体组织形态特征并进而 了解影响马氏体形态的各种因素是十分重要的。(一)马氏体的形态近年,随着薄透射电子显微技术的发展, 人们对马氏体的形态及其精细结构进行了详细的研究,发现钢中马氏体形态虽然多种多样,但就其特征而言,大体上可以分为以下几类。1、板条状马氏体板条状马氏体是低、中碳钢,马氏体时效 钢,不锈钢等铁系合金中形成的一种典型的马 氏体组织。低碳钢中的典组织如图 14所示。(1 )显微组织马氏体呈板条状,一束束排列在原奥氏体 晶粒内。因其显微组织是由许多成群的板条组 成,故称为板条马氏体。对某些钢因板条不易 浸蚀显现出来,而往往呈现为块状,所以有时 也之为块状马氏体。又因为这种马氏

27、体的亚结 构主要为位错,通常也称为位错型马氏体。这 种马氏体是由若干个板条群组成的,也有群状 马氏体之称。每个板条群是由若干个尺寸大致 相同的板条所组织,这些板条成大致平行且方 向一定的排列。(2)晶体学特征板条马氏体与母相奥氏体的晶体学位向关系是 K S关系,惯习面为(111) y,而18-8不锈钢中板条状马氏体的惯习面是(225) 丫。根据近年来的研究,板条马氏体显微组织的晶体 学特征可以用图15表示。其中A是平行排列的板条 状马氏体束组织的较大的区域, 称为板条群。一个原 始奥氏体晶粒可以包含几个板条群(通常为 35)。在一个板条群内又可分成几个平行的像图中 B那样 的区域。当用某些溶液

28、腐蚀时, 此区域有时仅显现出板条群的边界,而使显微组织呈现为块状, 块状马氏图15板条马氏体显微组织的晶体学特征体即由此而得名。当采用着色浸蚀时(如用 100ccHCI+5gCaCI 2+100ccCH3CH 溶液),可在板条群内显现出黑白色调。同一色调区是由相同位向的马氏体板条组成的,称其为同位束。按照S位向关系,马氏体在母相奥氏体中可以有 24个不同取向,其中能平行生成板条状马氏体的位向有六种,而一个同位束就是由其中的一种位向转变而来的板条。 数个平行的同位向束即组成一个板条群。有人认为,在一个板条群内,只可能按两组可能位向转变。因此,一 个板条群是由两组同位向束交替组成, 这两组同位向束

29、之间可以大角晶界相间。 但也有一个板条群大体上由一种同位向束构成的情况, 如图中C所示。而一个同位向束又由平行排列的板条组成,如图中 D所示。实验证明,改变奥氏体化温度,从而改变了奥氏体晶粒大小,对板条宽度分布几乎不发 生影响,但板条群的大小随着奥氏体晶粒的增大而增大,而且两者之比大致不变。所以一个 奥氏体晶粒内生成的板条群数大体不变。(3)亚结构板条马氏体的特征是板条内有密度很高的位错。经电阻法测量其密度约为 0.30.9 X1012cm-2。此外,在板条内有时存在着相变孪晶,但只是局部的,数量不多,不是主要的精 细结构形式。2、片状马氏体是铁系合金中出现的另一种典型的马氏体组织, 常见于淬

30、火高、中碳钢及高Ni的Fe-Ni合金中。(1 )显微组织高碳钢中典型的片状马氏体组织如图 16所示。这种马氏体的空间形态呈双凸透镜片状,所以也称之为透镜片状马氏体。因与试样磨面相截而 在显微镜下呈现为针状或竹叶状, 故又称之为针状马氏体或竹叶状马氏体。片状马氏体的亚结构主要为孪 晶,因此又称其为孪晶型马氏体。片状马氏体的显微组织特征是, 马氏体片大小不一,马氏体片不平行,互成一定夹角。 第一片马氏体形成时贯穿整个奥氏体晶粒而将奥氏体分割成两半, 使以后形成的马氏体片大小受到限制, 后形成的马氏体片逐渐变小,即马氏体形成时具有分割奥氏体晶粒 的作用。马氏体片的大小几乎完全取决于奥氏体晶粒 的大小

31、。如图17所示。片状马氏体常能见到有明显的中脊。关于中脊的 形成规律目前尚不十分清楚。(2)晶体学特征图17片状马氏体显微组织示意图片状马氏体的惯习及位向关系与形成温度有关,形 成温度高时,惯习面为(225) y,与奥氏体的位向关系 为K S关系;形成温度低时,惯习面、 (259) 丫为,向关系西山关系,可以爆发形成,马氏体片有明显的中 脊。(3)亚结构片状马氏体的亚结构主要为相变孪晶, 这是片状马氏体组织的重要特征。 孪晶的间距大约为50?, 般不扩展到马氏体的边界上,在片的边际则为复杂的位错组列。一般认为这种 位错是沿111 方向呈点阵状规则排列的螺型位错。 片状马氏体内的相变孪晶一般是 (112)孪晶。但也发现了( 110) a,孪晶与(112) a,孪晶混生的现象。孪晶方向为 11-1片状马氏体内部亚结构的差异,可将其分为以中脊为中心的相变孪晶区(中间部分)和无孪晶区(在片的周围部分,存在位错) 。孪晶区所占的比例随合金成分变化而异。在 Fe-Ni合金中,含Ni量越高(Ms点越低)孪晶区越大。根据 Fe-Ni-C合金的研究表明,即使对同一成分的合金,随着 Ms点降低(如由改变奥氏体化温度引起)孪晶区所占的比例

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1