ImageVerifierCode 换一换
格式:DOCX , 页数:62 ,大小:240.05KB ,
资源ID:12124890      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12124890.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(冶金专业英语全.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

冶金专业英语全.docx

1、冶金专业英语全有 色 冶 金 专 业 英 语(适用于冶金工程专业)2009年9月Lesson 3 Ore DressingOre dressing 选矿Concentrate v. 富积,浓缩,集聚 n. 精矿,浓缩物Concentration n. 集中,浓缩,浓度 Acid concentration 酸浓度Bulk n. 正体,主体,团块Gangue n. 脉石,尾矿,矿脉中的夹杂物Tailing n. 尾矿Severance n. 分离,隔离,碎散Beneficiation n. 分选Comminution n. 粉碎Run-of-mine n. 原矿Middling n. 中矿Lib

2、eration n. 解离Crush n. v. 粉碎,碾碎,挤压Grind n. v. 研磨,磨细Screen n. v. 筛,筛分Jigging n. 跳选,跳汰选Hand picking 手选Luster n. 光泽,光亮 v. 闪光,发光 Specific gravity 比重Magnetic permeability 磁导率Inductive charging 感应电荷Electrostatic separation 静电分离Fracture n. 断口,裂缝Automatic sorting of radioactive natures 放射性自动选矿Magnitude n. 大小

3、,尺寸,量级,强度,等级Magnetic separation 磁选Magnetic field 磁场Gravity concentration 重力选矿Medium n. 介质,媒介,中间物,培养基Dilate v. (使)膨胀,扩张,扩大 Dilated bed 松散床层Dilation n. 膨胀系数,传播,伸缩,蔓延Lip n. 凸出部分,唇部Diverse adj. 不同的,互异的,各种各样的Table n. 摇床,淘汰盘Tabling 摇床选,淘汰选Motion n. 运动,输送,行程,机械装置,运动机构Sink-float separation 重介质分选Suspension n

4、. 悬浮物,悬浮液Cone n. 圆锥体,锥形漏斗,圆锥破碎机Stir n. v. 移动,摇动,搅拌 Stirrer n. 搅拌器,搅拌机Rotary adj. 旋转的,回转的,转动的Circumference n. 圆周,周边Rotating motion 旋转装置,旋转设备Floatation n. 浮选Pulp n. 矿浆,浆料 v. 制浆,浆化Sluice n. 槽,排水道,水槽Froth floatation 泡沫浮选Hematite n. 赤铁矿Pyrolusite n. 软锰矿Diamond n. 金刚石Graphite n. 石墨 Ore dressing concerns w

5、ith the technology of treatment of ores to concentrate their valuable constituents (minerals) into products (concentrate) of smaller bulk, and simultaneously to collect the worthless material (gangue) into discardable waste (tailing). The fundamental operations of ore-dressing processes are the brea

6、king apart of the associated constituents of the ore by mechanical means (severance) and the separation of the severed components (beneficiation) into concentrate and tailing, using mechanical or physical methods which do not effect substantial chemical changes.1 Severance. Comminution is a single,

7、or multistage processes whereby ore is reduced from run-of-mine size to that size needed by the beneficiation processes. The process is intended to detailed control, a class of particles containing both mineral and gangue (middling particles) are also produced. The smaller the percentage of middling

8、 the greater the degree of liberation. Comminution is divided into crushing (down to 6-to 14-mush) and grinding (down to micron size). Crushing is usually done in three stages: coarse crushing from run-of-mine size to 4-6 in., or coarser; intermediate crushing down to about 1/2 in.; and fine crushin

9、g to 1/4 in. or less. Screen is a method of sizing whereby graded products are produced, the individual particles in each grade being of nearly the same size. In beneficiation, screening is practiced for two reasons: as and integral part of the separate on process, for example, in jigging, and to pr

10、oduce a feed of such size range as is compatible with the applicability of the separation process. Beneficiation. This step consists of two fundamental operations: the determination that an individual particle is either a mineral or a gangue particle (selection); and the movement of selected particl

11、es via different paths (separation) into the concentrate and tailing products.2 When middling particles occur, they will either be selected according to their mineral content and then caused to report as concentrate or tailing, or be separated as a third product (middling).3 In the latter case, the

12、middling is reground to achieve further liberation, and the product is fed back into the stream of material being treated.Selections based upon some physical or chemical property in which the mineral and gangue particles differ in kind or degree or both. Thus in picking, the old form of beneficiatio

13、n, color, luster, and shape are used to decide whether a lump of ore is predominantly mineral or gangue. Use is made of differences in other physical or chemical properties, such as specific gravity, magnetic permeability, inductive charging (electrostatic separation), surface chemical properties, b

14、ulk chemical properties, weak planes of fracture (separation by screening), and gamma-ray emission (automatic sorting of radioactive nature). Separation is achieved by subjecting each particle of the mixture to a set of forces that is usually the same irrespective of the nature of the particles exce

15、pting for the force based upon the discriminating property. This force may be present for both mineral and gangue particles but differing in magnitude, or it may be present for one type of particle and absent for the other. As a result of this difference separation is possible, and the particles are

16、 collected as concentrate or tailing. Magnetic separation utilizes the force exerted by a magnetic field upon magnetic materials to counteract partially or wholly the effect of gravity. Thus under the action of these two forces different paths are produced for the magnetic and nonmagnetic particles.

17、 Gravity concentration is based on a discriminating force, the magnitude of which varies with specific gravity. The other force that is usually operating in gravity methods is the resistance to relative motion exerted upon the particles by the fluid or semi-fluid medium in which separation takes pla

18、ce Jigging is a gravity method that separates mineral from gangue particle by utilizing an effective difference in settling rate through a periodically dilated bed. During the dilation heavier particles work their way to the bottom while the lighter particles remain on top and are discharged over th

19、e lip. Jigging is practiced on materials that are liberated upon being reduced to sizes ranging from 3/2 in., down to several millimeters. It has been used on such diverse ores as coal, iron ores, gold and lead ores. Tabling is a gravity method in which the feed, introduced onto an inclined plane an

20、d reciprocated deck, moves in the direction of motion while simultaneously being washed by a water film which moves it also at right angles to the motion of the deck.4 The heavier mineral and the lighter gangue are usually collected over the edges of the deck. The boundary between the heavier minera

21、l and lighter gangue particles is roughly a linear diagonal band on the deck of the table. This diagonal band is not stationary; rather it tends to move about a mean position. In practice therefore, a third product, the middling, is collected between the discharge edges of concentrate and gangue. If

22、 the feed to the table has been crushed or ground to produce liberation, then the middling is returned to the feed. If liberation has not been achieved, the middling is returned to the crushing-grinding section of the mill. Tables may be used to treat relatively coarse material (sand tables) with si

23、zes ranging from about 23 mm down to 0.07 mm. Sink-float separation is the simplest gravity method and is based on existing differences in specific gravity. The feed particles are introduced into a suspension, the specific gravity of which is between that of the mineral and gangue particles, with th

24、e result that particles of higher specific gravity sink while those of lower specific gravity float.5 The separator is a cone equipped with a slowly operated stirrer which serves to impart slow rotary motion to the suspension and prevent the suspension from settling out on the walls. Feed is introdu

25、ced at one point of the circumference and is slowly moved by the rotating motion of the suspension. By the time this material has reached the discharge point on the circumference, those particles whose specific gravity is greater than that of the suspension have moved down through the suspension so

26、that only float particles are discharged at the top, the sink particles are discharged at the bottom. Flotation is used to separate valuable minerals from waste rock or gangue, in which the ground ore is suspended in water and, after chemical treatment, subjected to bubbles of air. The minerals that

27、 are to be floated attach to the air bubbles, rise through the suspension, and are removed with the froth that forms on top of the pulp. Froth flotation was first used to recover sulfide minerals that were too fine to be recovered by gravity concentrators such as jigs, tables, and sluices. Froth flo

28、tation is also used to concentrate oxide minerals such as hematite (Fe2O3) and pyrolusite (MnO2), and native elements such as sulfur, silver, gold, copper and carbon (both graphite and diamond). Froth flotation is also used to separate the silicate minerals.Lesson 5 Materials Science and Engineering

29、Embrace 包括 Ceramics 陶瓷Inanimate 无生命的 Homogeneous 均匀的Predominate 主导Rigidity 刚性Weldability 可焊性Composite 复合材料Spectrum 种类Brass 黄铜Bronze 青铜Invar 因钢(NiFe) Cement 水泥Ferrite 铁素体Garnet 石榴石PVC 聚氯乙烯Polyethylene 聚乙烯PTFE 聚四氟乙烯Terylene 涤纶nylon 尼龙leather 皮革reinforced 增强dispersion 弥散supersonic 超声波optimum 最优fabricat

30、ion 人工制作invariable 不变的corrosion 腐蚀fatigue 疲劳assess 评估1. Materials Science “Materials Science” is a subject for engineers of the modern age. It embraces a study of different materials regarding their structures, properties and uses. The “material” here does not refer to all matter in the Universe. If

31、 this were so, it would include all the physical sciences and the life sciences form astronomy to zoology. We can restrict the definition only to matter useful to mankind. Even here, the range is too broad for the purposes of the engineer. For example, we can list a large number of things useful, to

32、 man, such as food, medicines, explosives, chemicals, water, steel, plastics and concrete, only a few of which qualify as engineering materials. We have then to be more specific, and define materials as that part of inanimate matter that is useful to the engineer in the practice of his profession.1 Recently the term, materials refer only to solid materials, even though it is possible to quote a number of examples of liquid and gaseous materials such as s

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1