1、自控课程设计 上海电力学院控制原理应用课程设计 课 号: 240325504 专 业: 测控技术与仪器(电站方向) 班 级: 2012153班 姓 名: 徐建红 学 号: 20122600 指导教师: 贾再一 一、船舶航向的自动操舵控制系统介绍 自动操舵仪,是能自动控制舵机(见舵设备)以保持船舶按规定航向航行的设备。又称自动操舵装置。它是在通常的操舵装置上加装自动控制部分而成。其工作原理是:根据罗经显示的船舶航向和规定的航向比较后所得的航向误差信号,即偏航信号,控制舵机转动舵并产生合适的偏舵角,使船在舵的作用下,转向规定的航向。自动操舵仪具有自动操舵和手动操舵两种工作方式。船舶在大海中直线航行
2、时,采用自动操舵方式,可减轻舵工劳动强度和提高航向保持的精度,从而相应缩短航行时间和节省能源;船舶在能见度不良或进出港时,采用手动操舵方式,具有灵活、机动的特点。第一台在船上安装使用的自动操舵仪由德国的安许茨公司于1920年初研制成功。此后经历了三个发展时期,有三代产品。第一代为机械式自动操舵仪,第二代为50年代出现的机电式自动操舵仪,第三代是70年代出现的自适应自动操舵仪。二、实践课题1)实际控制过程船舶航行时是利用舵来控制的,现代的船舶装备了自动操舵仪。其主要功能是自动的,高精度的保持或者改变船舶航行方向。当自动操作仪工作时,通过负反馈的控制方式,不断把陀螺罗经送来的实际航向与设定的航向值
3、比较,将其差值放大以后作为控制信号来控制舵机的转航,使船舶能自动的保持或者改变到给定的航行上。由于船舶航向的变化由舵角控制,所以在航向自动的操舵仪工作时,存在舵机(舵角),船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。对于航迹自动操舵仪,还需构成位置反馈。 当尾舵的角坐标偏转,会在引起船只在参考方向上(如正北)发生某一固定的偏转,他们之间是由方程可由Nomoto方程表示:。传递函数有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。由此动力方程可以看出,船只的转动速率会逐渐趋向于一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹
4、(因为转动的速率为常数)。把掌舵齿轮看成一简单的惯性环节,即方向盘转动的角度引起尾舵的偏转。将系统合成。如图所示:图1:自动操舵控制系统已知某950英尺长的中型油轮,重150000t,其航向受控对象的表达式为Gp(s)=1.325*106(s+0.028)/s(s+0.091)(s+0.042)(s-0.00041),罗盘(传感器)的参数为1。2)控制设计要求试设计一个控制器Gc(s)代替原来的比例控制器,使得控制系统的性能指标满足要求:超调量小于5%;tssigma=0.05;zeta=(log(1/sigma)2)/(pi)2+(log(1/sigma)2)0.5 zeta = 0.690
5、1因为阻尼比0.6901,所以取阻尼比为0.7;系统的过渡过程时间与系统的阻尼比和无阻尼自然频率的关系,选择wn=0.025.运行主导极点命令:zeta=0.7;wn=0.025;d=1 2*zeta*wn wn*wn;roots(d) ans = -0.0175 + 0.0179i -0.0175 - 0.0179i(2)绘制原来的根轨迹图,如下图,由图可知未校正系统的根轨迹位于S平面的右半平面。不通过主导极点,并且主导极点在原根轨迹的左侧,所以选择超前校正。z=-0.028;p=0,-0.091,-0.042,0.00041;k=1325000;num,den=zp2tf(z,p,k);p
6、rintsys(num,den) num/den = 1325000 s + 37100 - s4 + 0.13259 s3 + 0.0037675 s2 - 1.567e-006 snum=1325000 37100;den=1 0.13259 0.0037675 -1.567e-006 0;rlocus(num,den)图4.1 原系统根轨迹(3)计算超前校正装置应产生的超前相角命令: n0=1325000 37100;d0=1 0.13259 0.0037675 -1.567e-006 0;s1=-0.0175+0.0179i;fai0=180-angle(polyval(n0,s1)/
7、polyval(d0,s1)*180/pi fai0 = 79.6031(4)将超前校正网络的零点配置在预期主导极点的正下方,取z=0.0175;由相角条件可知,期望极点与校正装置极点的相角应该满足等式:p=10.3969。(5)过主导极点,做角度为10.3969的直线,计算直线与实轴的交点: p=abs(real(s1)+(abs(imag(s1)/tan(10.3969*pi/180) p = 0.1151(6)校正后的系统的开环传递函数为G(s)=1.325*106(s+0.028)(s+0.0175)/s(s+0.091)(s+0.042)(s-0.00041)(s+0.1151),绘
8、制校正后的系统的根轨迹,如下图,通过滑动鼠标获得期望主导极点处得幅值K,得到K= z=-0.028;-0.0175;p=0;-0.091;-0.042;0.00041;-0.1151;k=1325000;num,den=zp2tf(z,p,k); printsys(num,den) num/den = 1325000 s2 + 60287.5 s + 649.25 - s5 + 0.24769 s4 + 0.019029 s3 + 0.00043207 s2 - 1.8036e-007 snum=1325000 60287.5 649.25;den=1 0.24769 0.019029 0.0
9、0043207 -1.8036e-007 0;rlocus(num,den)(7)系统校验动态性能指标,并绘制系统校正后的阶跃响应。 z=-0.028;-0.0175;p=0;-0.091;-0.042;0.00041;-0.1151;k=1325000*(2.93e-010);num,den=zp2tf(z,p,k);printsys(num,den)图4.2校正后系统根轨迹 num/den = 0.00038823 s2 + 1.7664e-005 s + 1.9023e-007 - s5 + 0.24769 s4 + 0.019029 s3 + 0.00043207 s2 - 1.803
10、6e-007 snum1=0.00038823 1.7664e-005 1.9023e-007;den1=1 0.24769 0.019029 0.00043207 -1.8036e-007 0;num2=1;den2=1;G1=tf(num1,den1);G2=tf(num2,den2);GA=feedback(G1,G2);GATransfer function: 0.0003882 s2 + 1.766e-005 s + 1.902e-007-s5 + 0.2477 s4 + 0.01903 s3 + 0.0008203 s2 + 1.748e-005 s + 1.902e-007num
11、=0.0003882 1.766e-005 1.902e-007;den=1 0.2477 0.01903 0.0008203 1.748e-005 1.902e-007;step(tf(num,den)图4.3校正后系统单位阶跃响应由图可知校正后的系统的超调量为45.3%5%,调整时间为271sz=-0.028;p=0,-0.091,-0.042,0.00041;k=1325000;num,den=zp2tf(z,p,k);printsys(num,den) num/den = 1325000 s + 37100 - s4 + 0.13259 s3 + 0.0037675 s2 - 1.56
12、7e-006 s s0=tf(1325000 37100,1 0.13259 0.0037675 -1.567e-006 0);rltool(s0) 图5.1 原系统根轨迹图5.2 原系统的阶跃响应(1)根据性能指标确定期望主导极点的大概位置: sigma=0.05;zeta=(log(1/sigma)2)/(pi)2+(log(1/sigma)2)0.5 zeta = 0.6901因为阻尼比0.6901,所以取阻尼比为0.7; zeta=0.7;wn=0.025;d=1 2*zeta*wn wn*wn;roots(d) ans= -0.0175 + 0.0179i -0.0175 - 0.0
13、179i(3)与图2进行对比,可知期望主导极点位于根轨迹左边,所以选择超前校正控制器。(4)在负时轴上增加零点和极点,极点在零点左边,进行反复取值、校正,直到取出满足要求的指标值。 在快捷菜单中,选择增加零点和极点,在根轨迹图上直接点击所需要的位置,或可将鼠标移动到增加的零点和极点的位置,调节位置满足期望值。图5.3图5.4 对系统进行第一次校正,原不稳定系统经过校正后逐渐趋于稳定系统,超调量的值与所期望的超调量的值非常接近,但是调整时间的值很大,不满足希望值,需要进行再次调整。图5.5图5.6 由于所需要加入的超前控制器的零点和极点的值很小,用鼠标直接移动根轨迹图时,不能满足所需要的值,所以
14、打开Current Compensator编辑框,弹出对校正控制器设计的编辑界面图,对所需改变零点、极点或者改变增益。rltool界面会根据改变的值更新根轨迹图,使得系统的阶跃响应图满足需求。图5.7图5.8 由图可知,加入如图所示的超前控制器,使系统趋于稳定,但是超调量和调整时间的值都比期望值大,所以所求的控制器还不满足指标值,需要进行继续改变开环零极点的值,才能使系统达到所需要的期望值。经过多次的调整零点和极点的值,最后得到如下图所示,加入超前校正器,代替了原来的比例控制器以后,使得系统的性能满足超调量小于5%;调整时间ts275s。图5.9 校正后根轨迹图图5.10 校正后系统的阶跃响应
15、如图8和9所示,加入超前控制器以后,可得到超调量等于4.8%5%,满足要求;调整时间ts=81s275s,也满足设计要求。六、实验小结 本次实验是通过加入控制器来使原来不稳定系统满足性能指标的要求。因为期望极点在根轨迹的左侧,所以实验中选择超前控制器来进行校正。使用根轨迹法对系统进行校正,在设计过程中,让我对根轨迹有了更深一步的认识,不只局限于片面。在实验的过程中,刚开始对于根轨迹校正的不熟悉,所以花费了较长的时间来熟悉与学习。原来使用计算超前角的方法,但是没有成功,后来运用rltool工具,对系统进行校正,进行了多次的改变零极点的值,才最终使系统满足设计的要求。通过本次的课程设计,让我对MATLAB有了更深入的了解,运用也变得更加成熟,在学习与设计的过程中,发现问题、通过询问指导老师解决问题,最终得到了成功!
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1