1、粒子在磁场中的运动教师姓名 学生姓名 教材版本浙教版学科名称物理年 级高三上课时间 2月18日 20:00-21:00课题名称专题突破:带电粒子在电磁场中的运动教学目标1 带电粒子在匀强磁场中的运动2 带电粒子在有界磁场中的临界,极值问题3 带电粒子在复合场中的运动问题教学重点带电粒子在有界磁场中的临界,极值问题教 学 过 程备 注带电粒子在磁场中的运动一、难点形成原因:1、由于受力分析、圆周运动、曲线运动、牛顿定律知识的不熟悉甚至于淡忘,以至于不能将这些知识应用于带电粒子在磁场中的运动的分析,无法建立带电粒子在匀强磁场中的匀速圆周运动的物理学模型。2、受电场力对带电粒子做功,既可改变粒子的速
2、度(包括大小与方向)又可改变粒子的动能动量的影响,造成磁场中的洛仑兹力对带电粒子不做功(只改变其速度的方向不改变其大小)的定势思维干扰,受电场对带电粒子的偏转轨迹(可以是抛物线)的影响,造成对磁场偏转轨迹(可以是圆周)的定势思维干扰。从而使带电粒子在电场中的运动规律产生了对带电粒子在磁场中的运动的前摄抑制。3、磁场内容的外延知识与学生对物理概念理解偏狭之间的矛盾导致学习困难。二、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:电荷对磁场有相对运动磁场对与其相对静止的电荷不会产生洛伦兹力作用电荷的运动速度方向与磁场方向不平行 2. 洛伦兹力大小:当电荷运动方向与磁场方向
3、平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qB;当电荷运动方向与磁场方向有夹角时,洛伦兹力f= qBsin3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,0或180时,带电粒子粒子在磁场中以速度做匀速直线运动2. 若带电粒子的速度方向与匀强磁场方向垂直,即90时,带电粒子在匀强磁场中以入射速度做匀速圆周运动向心力由洛伦兹力提供: 轨道半径公式: 周期:,可见T只与有关,与v、R无关。(三)充分运用数学
4、知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角之间的关系()作为辅助。圆心的确定,通常有以下两种方法。 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P为入射点,M为出射点)。 已知入射方向和出射点的位置,可
5、以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P为入射点,M为出射点)。(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 粒子速度的偏向角等于回旋角,并等于AB弦与切线的夹角(弦切角)的2倍,如图9-3所示。即:。 相对的弦切角相等,与相邻的弦切角/互补,即/180o。(3)运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为时,其运动时间可由下式表示。注意:带电粒子在匀强磁场中的圆周运动具有对称性。 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于
6、入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。应用对称性可以快速地确定运动的轨迹。例1:如图9-4所示,在y小于0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度从O点射入磁场,入射速度方向为xy平面内,与x轴正向的夹角为,若粒子射出磁场的位置与O点的距离为L,求该粒子电量与质量之比。图9-4 图9-5 例2:电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图9-6所示,磁场方向垂直于
7、圆面,磁场区的中心为O,半径为r。当不加磁场时,电子束将通过O点打到屏幕的中心M点。为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度,此时磁场的磁感强度B应为多少?【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向一定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r和轨迹半径R有关的直角三角形即可求解。2. “带电粒子在匀强磁场中的圆周运动”的范围型问题例3:如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成角的速度V0垂直射入磁场中。要使粒
8、子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。3. “带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:直径是圆的最大弦;同一圆中大弦对应大的圆心角;由轨迹确定半径的极值。例5:图9-13中半径r10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B033T垂直于纸
9、面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2106m/s的粒子;已知粒子质量为m=6.610-27kg,电量q=3.210-19c,则粒子通过磁场空间的最大偏转角及在磁场中运动的最长时间t各多少?【审题】本题粒子速率一定,所以在磁场中圆周运动半径一定,由于粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角不同,要使粒子在运动中通过磁场区域的偏转角最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出粒子的运动轨迹进行求解。4. “带电粒子在匀强磁场中的圆周运动”的多解型问题抓住多解
10、的产生原因:(1)带电粒子电性不确定形成多解。(2)磁场方向不确定形成多解。(3)临界状态不唯一形成多解。(4)运动的重复性形成多解。例7:如图9-15所示,第一象限范围内有垂直于xoy平面的匀强磁场,磁感应强度为B。质量为m,电量大小为q的带电粒子在xoy平面里经原点O射入磁场中,初速度v0与x轴夹角=60o,试分析计算:(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大?(2)带电粒子在磁场中运动时间多长?【审题】若带电粒子带负电,进入磁场后做匀速圆周运动,圆心为O1,粒子向x轴偏转,并从A点离开磁场。若带电粒子带正电,进入磁场后做匀速圆周运动,圆心为O2,粒子向y轴偏转,并
11、从B点离开磁场。粒子速率一定,所以不论粒子带何种电荷,其运动轨道半径一定。只要确定粒子的运动轨迹,即可求解。例8:一质量为m,电量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A. B. C. D. 例9:如图9-17甲所示,A、B为一对平行板,板长为L,两板距离为d,板间区域内充满着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,一个质量为m,带电量为+q的带电粒子以初速,从A、B两板的中间,沿垂直于磁感线的方向射入磁场。求在什么范围内,粒子能
12、从磁场内射出?【审题】粒子射入磁场后受到洛仑兹力的作用,将做匀速圆周运动,圆周运动的圆心在入射点的正上方。要想使粒子能射出磁场区,半径r必须小于d/4(粒子将在磁场中转半个圆周后从左方射出)或大于某个数值(粒子将在磁场中运动一段圆弧后从右方射出)例10:如图9-18所示,在x轴上方有一匀强电场,场强为E,方向竖直向下。在x轴下方有一匀强磁场,磁感应强度为B,方向垂直纸面向里。在x轴上有一点P,离原点的距离为a。现有一带电量+q的粒子,质量为m,从y轴上某点由静止开始释放,要使粒子能经过P点,其初始坐标应满足什么条件?(重力作用忽略不计)图9-18 【审题】根据带电粒子在电场中的加速运动和带电粒
13、子在匀强磁场中的匀速圆周运动知识,要使带电粒子能通过P点,由于粒子在磁场中偏转到达P点时可能经过的半圆个数不确定,导致多解。5. 带电粒子在几种“有界磁场”中的运动(1)带电粒子在环状磁场中的运动例11:核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图9-19所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4C/,中空
14、区域内带电粒子具有各个方向的速度。试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。(2)所有粒子不能穿越磁场的最大速度。【审题】本题也属于极值类问题,寻求“临界轨迹”是解题的关键。要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切;要使所有粒子都不穿越磁场,应保证沿内圆切线方向射出的粒子不穿越磁场,即运动轨迹与内、外圆均相切。(2)带电粒子在有“圆孔”的磁场中运动例12:如图9-22所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁
15、感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为、带电量为q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)【审题】带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点。(3)带电粒子在相反方向的两个有界磁场中的运动例13:如图9-
16、24所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向外。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:(1)中间磁场区域的宽度d;(2)带电粒子从O点开始运动到第一次回到O点所用时间t.【审题】带电粒子在电场中经过电场加速,进入中间区域磁场,在洛伦兹力作用下做匀速圆周运动,又进入右侧磁场区域做圆周运动,根据题意,粒子又回到O点,所以粒子圆周运动的轨迹具有对称性,如图9-25画出粒子运动轨迹。课后小结上课情况:课后需再巩固的内容:配合需求家 长学管师学科组长审批教研主任审批
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1