ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:44.23KB ,
资源ID:12015578      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/12015578.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(外文翻译基于PAC的实时人脸检测和跟踪方法.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

外文翻译基于PAC的实时人脸检测和跟踪方法.docx

1、外文翻译基于PAC的实时人脸检测和跟踪方法中文2960字译文一基于PAC的实时人脸检测和跟踪方法摘要:这篇文章提出了复杂背景条件下,实现实时人脸检测和跟踪的一种方法。这种方法是以主要成分分析技术为基础的。为了实现人脸的检测,首先,我们要用一个肤色模型和一些动作信息(如:姿势、手势、眼色)。然后,使用PAC技术检测这些被检验的区域,从而判定人脸真正的位置。而人脸跟踪基于欧几里德(Euclidian)距离的,其中欧几里德距离在位于以前被跟踪的人脸和最近被检测的人脸之间的特征空间中。用于人脸跟踪的摄像控制器以这样的方法工作:利用平衡/(pan/tilt)平台,把被检测的人脸区域控制在屏幕的中央。这个

2、方法还可以扩展到其他的系统中去,例如电信会议、入侵者检查系统等等。1.引言 视频信号处理有许多应用,例如鉴于通讯可视化的电信会议,为残疾人服务的唇读系统。在上面提到的许多系统中,人脸的检测喝跟踪视必不可缺的组成部分。在本文中,涉及到一些实时的人脸区域跟踪1-3。一般来说,根据跟踪角度的不同,可以把跟踪方法分为两类。有一部分人把人脸跟踪分为基于识别的跟踪喝基于动作的跟踪,而其他一部分人则把人脸跟踪分为基于边缘的跟踪和基于区域的跟踪4。 基于识别的跟踪是真正地以对象识别技术为基础的,而跟踪系统的性能是受到识别方法的效率的限制。基于动作的跟踪是依赖于动作检测技术,且该技术可以被分成视频流(optic

3、al flow)的(检测)方法和动作能量(motionenergy)的(检测)方法。 基于边缘的(跟踪)方法用于跟踪一幅图像序列的边缘,而这些边缘通常是主要对象的边界线。然而,因为被跟踪的对象必须在色彩和光照条件下显示出明显的边缘变化,所以这些方法会遭遇到彩色和光照的变化。此外,当一幅图像的背景有很明显的边缘时,(跟踪方法)很难提供可靠的(跟踪)结果。当前很多的文献都涉及到的这类方法时源于Kass et al.在蛇形汇率波动5的成就。因为视频情景是从包含了多种多样噪音的实时摄像机中获得的,因此许多系统很难得到可靠的人脸跟踪结果。许多最新的人脸跟踪的研究都遇到了最在背景噪音的问题,且研究都倾向于

4、跟踪未经证实的人脸,例如臂和手。在本文中,我们提出了一种基于PCA的实时人脸检测和跟踪方法,该方法是利用一个如图1所示的活动摄像机来检测和识别人脸的。这种方法由两大步骤构成:人脸检测和人脸跟踪。利用两副连续的帧,首先检验人脸的候选区域,并利用PCA技术来判定真正的人脸区域。然后,利用特征技术(eigentechnique)跟踪被证实的人脸。2.人脸检测 在这一部分中,将介绍本文提及到的方法中的用于检测人脸的技术。为了改进人脸检测的精确性,我们把诸如肤色模型1,6和PCA7,8这些已经发表的技术结合起来。2.1肤色分类检测肤色像素提供了一种检测和跟踪人脸的可靠方法。因为通过许多视频摄像机得到的一

5、幅RGB图像不仅包含色彩还包含亮度,所以这个色彩空间不是检测肤色像素1,6的最佳色彩图像。通过亮度区分一个彩色像素的三个成分,可以移动亮度。人脸的色彩分布是在一个小的彩色的色彩空间中成群的,且可以通过一个2维的高斯分部来近似。因此,通过一个2维高斯模型可以近似这个肤色模型,其中平均值和变化如下:m=(,) 其中, (1) (2)一旦建好了肤色模型,一个定位人脸的简单方法是匹配输入图像来寻找图像中人脸的色彩群。原始图像的每一个像素被转变为彩色的色彩空间,然后与该肤色模型的分布比较。2.2动作检测 虽然肤色在特征的应用种非常广泛,但是当肤色同时出现在背景区域和人的皮肤区域时,肤色就不适合于人脸检测

6、了。利用动作信息可以有效地去除这个缺点。为了精确,在肤色分类后,仅考虑包含动作的肤色区域。结果,结合肤色模型的动作信息导出了一幅包含情景(人脸区域)和背景(非人脸区域)的二进制图像。这幅二进制图像定义为 ,其中It(x,y)和It-1(x,y)分别是当前帧和前面那帧中像素(x,y)的亮度。St是当前帧中肤色像素的集合,(斯坦)t是利用适当的阈限技术计算出的阈限值9。作为一个加速处理的过程,我们利用形态学(上)的操作(morpholoical operations)和连接成分分析,简化了图像Mt。2.3利用PCA检验人脸 因为有许多移动的对象,所以按序跟踪人脸的主要部分是很困难的。此外,还需要检

7、验这个移动的对象是人脸还是非人脸。我们使用特征空间中候选区域的分量向量来为人脸检验问题服务。为了减少该特征空间的维度,我们把N维的候选人脸图像投影到较低维度的特征空间,我们称之为特征空间或人脸空间7,8。在特征空间中,每个特征说明了人脸图像中不同的变化。为了简述这个特征空间,假设一个图像集合I1,I2,I3,IM,其中每幅图像是一个N维的列向量,并以此构成人脸空间。这个训练(测试)集的平均值用A来定义。用iI IA来计算每一维的零平均数,并以此构成一个新的向量。为了计算M的直交向量,其中该向量是用来最佳地描述人脸图像地分布,首先,使用CiirYYr (4)来计算协方差矩阵Y1 2M。虽然矩阵C

8、是NN维的,但是定义一个N维的特征向量和N个特征值是个难处理的问题。因此,为了计算的可行性,与其为C找出特征向量,不如我们计算YTY中M个特征向量vk和特征值k,所以用u k来计算一个基本集合,其中k1,M。关于这M个特征向量,选定M个重要的特征向量当作它们的相应的最大特征值。对于M个训练(测试)人脸图像,特征向量W iw 1,w 2,w M用w ku kTi,k=1,,M(6)来计算。为了检验候选的人脸区域是否是真正的人脸图像,也会利用公式(6)把这个候选人脸区域投影到训练(测试)特征空间中。投影区域的检验是利用人脸类和非人脸类的检测区域内的最小距离,通过公式(7)来实现的。Min(|Wkc

9、andidateWface|,|WkcandidateWnonface|),(7)其中Wkcandidate是训练(测试)特征空间中对k个候选人脸区域,且Wface,Wnonface分别是训练(测试)特征空间中人脸类和非人脸类的中心坐标,而|表示特征空间中的欧几里德距离(Euclidean)3.人脸跟踪在最新的人脸检测中,通过在特征空间中使用一个距离度量标准来定义图像序列中下一幅图像中被跟踪的人脸。为了跟踪人脸,位于被跟踪人脸的特征向量和K个最近被检测的人脸之间的欧几里德距离是用objargkmin|WoldWk|,k1,K,(8)来计算的。 在定义了人脸区域后,位于被检测人脸区域的中心和屏幕

10、中心之间的距离用distt(face,screen)Facet(x,y)Screen(height/2,width/2),(9)来计算,其中Facet(x,y)是时间t内被检测人脸区域的中心,Screen(height/2,width/2)是屏幕的中心区域。使用这个距离向量,就能控制摄像机中定位和平衡/倾斜的持续时间。摄像机控制器是在这样的方式下工作的:通过控制活动摄像机的平和/倾斜平台把被检测的人脸区域保持在屏幕的中央。在表2自己品母国。参数表示的是活动摄像机的控制。用伪代码来表示平衡/倾斜处理的持续时间和摄像机的定位。计算平和/倾斜持续时间和定位的伪代码:Procedure Duratio

11、n(x,y) BeginSigd=None;Distance=;IF distance thenSigd=Close;ELSEIF distance thenSigd=fat;Return(Sigd); End Duration;Procedure Orientation(x,y) BeginSigo=None;IF x thenAdd “RIGHT” to Sigo;ELSEIF x thenAdd “up”to Sigo;ElSEIF x- thenAdd “DOWN” to Sigo;Return(Sigo); End Orientation;4.结论本文中提议了一种基于PAC的实时人脸

12、检测和跟踪方法。被提议的这种方法是实时进行的,且执行的过程分为两大部分:人脸识别和人脸跟踪。在一个视频输入流中,首先,我们利用注入色彩、动作信息和PCA这类提示来检测人脸区域,然后,用这样的方式跟踪人脸:即通过一个安装了平衡/请求平台的活动摄像机把被检测的人脸区域保持在屏幕的中央。未来的工作是我们将进一步发展这种方法,通过从被检测的人脸区域种萃取脸部特征来为脸部活动系统服务。参考文献1 Z. Guo, H. Liu, Q. Wang, and J. Yang, “A Fast Algorithm of Face Detection for Driver Monitoring,” In Proc

13、eedings of the Sixth International Conference on Intelligent Systems Design and Applications, vol.2, pp.267 - 271, 2001.2 M. Yang, N. Ahuja, “Face Detection and Gesture Recognition for Human-Computer Interaction,” The International Series in Video Computing , vol.1, Springer, 2001.3 Y. Freund and R.

14、 E. Schapire, “A Decision-Theoretic Generaliztion of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, no. 55, pp. 119-139, 1997.4 J. I. Woodfill, G. Gordon, R. Buck, “Tyzx DeepSea High Speed Stereo Vision System,” In Proceedings of the Conference on Computer

15、 Vision and Pattern Recognition Workshop, pp.41-45, 2004.5 Xilinx Inc., “Virtex-4 Data Sheets: Virtex-4 Family Overview,” Sep. 2008. DOI= 6 Y. Wei, X. Bing, and C. Chareonsak, “FPGA implementation of AdaBoost algorithm for detection of face biometrics,” In Proceedings of IEEE International Workshop

16、Biomedical Circuits and Systems, page S1, 2004.7 M. Yang, Y. Wu, J. Crenshaw, B. Augustine, and R. Mareachen, “Face detection for automatic exposure control in handheld camera,” In Proceedings of IEEE international Conference on Computer Vision System, pp.17, 206.8 V. Nair, P. Laprise, and J. Clark,

17、 “An FPGA-based people detection system,” EURASIP Journal of Applied Signal Processing, 2005(7), pp. 1047-1061, 20059 C. Gao and S. Lu, “Novel FPGA based Haar classifier face detection algorithm acceleration,” In Proceedings of International Conference on Field Programmable Logic and Applications, 2

18、008.外文原文一PCA-Base Real-Time Face Detection and Tracking1【Abstract】:This article put forward complicated background term next; realize solid contemporaries face examination with on the trail of a kind of method. These kinds of method regard main composition analysis technique as basal. Facial examina

19、tion in person for realizing, first, we want to use a skin color model to act the information with the some (such as: Posture, signal, expression of eyes).Then, the usage PAC technique examines these drive the district that examine, from but judge a real position. But persons face follows according

20、to the is several in the virtuous (Euclidian) distance of, among them the is several to reign in the virtuous distance in past drive on the trail of persons face with recent drive the person who examine the characteristic space inside of the a. Useding for a for following resembles the controller th

21、e work in such way: Make use of equilibrium/ tilt to one side (pan/ tilt) the terrace, examine drive of person a district controls at hold the act central. This method cans also expand to go to in the other system, for example telecommunication meeting, invader check system etc.1 prefaceSeeing the s

22、ignal of handles many applications, for example owing to the communication can see the telecommunication meeting that turn, for disable and sick person service of the lips reads the system. In up many systems that mention, the facial examination in person drink to follow to see to cant lack necessar

23、ily of constitute the part. In this text, involve the some solid of person a district follows the 1 3 .By any large, according to follow the angle different, can is divided in to follow the method two types. Reach a the part of people follows persons face is divided into according to identify on the

24、 trail of to drink according to act of on the trail of, but other a the part of people then follows persons face is divided into according to edge of on the trail of with on the trail of that according to district 4.According to the on the trail of that identify is really with the object identifies

25、technique is basal, but follow the function of the system is the restrict of the efficiency to suffer to identify the method. According to the on the trail of of the action is a method to depend on to examine the technique in the action, and that technique can be been divided in to see flow( optical

26、 flow) with the method that act the energy( motion energy).According to the method of the edge useds for the edge that follow a picture preface row, but these edgeses is usually the boundary line of the main object.However, because were musted shine on with the light at the color by the on the trail

27、 of object the term descends to display the obvious edge changes, so these methodses will fall among the color with the variety that light shine on.In addition, be a background of picture contain very obvious edge,( follow the method) dependable result in very difficult offering.Current this type of

28、 method that a lot of cultural heritages all involve come from the Kass et al.In the snake form rate of exchange motion 5 the achievement of s.Because see the scene of to acquire from included various the noise of varieties solid the hour the resemble the machine of, therefore many systems is very r

29、are to dependable persons face to follow the result.Many latest a research for followings met most problem in background noise, and the research inclines toward persons face that follow has not yet the proof, for example arm with hand.In this text, we put forward a kind of according to PCA solid con

30、temporaries an examination with follow the method, that method is an activity to make use of a,such as figure,1 show resemble machine to examine with identify the person facial.This kind of method from two greatest steps composing:Person an examination with persons face follow.Make use of two contin

31、uouses, examine a persons face candidate for election districts first, combine exploitation PCA technique to judge the real person a district.Then, make use of the characteristic technique( eigen technique) follow to confirmed persons face.2 Person an examinationIn this first part, will introduce th

32、e method that this text mention inside of used for the technique that examine persons face.For improves an accurate for examining, we announce such as the skin color model 1,6 with PCA 7,8 these already of the technique knot puts together.2.1 skin color classificationThe examination skin color pixel pro

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1