ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:734.29KB ,
资源ID:11893318      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11893318.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于MATLAB的图像平滑算法实现及应用.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于MATLAB的图像平滑算法实现及应用.docx

1、基于MATLAB的图像平滑算法实现及应用目录1.3 图像噪声 一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。下面介绍两种主要的噪声。1、高斯噪声这种噪声主要来源于电子电路噪声和低照明度或高温带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。高斯随机变量z 的概率密度函数(P

2、DF)由下式给出: 其中, z 表示图像像元的灰度值;表示z 的期望;表示z 的标准差。2、椒盐噪声主要来源于成像过程中的短暂停留和数据传输中产生的错误。其PDF 为: 如果b a, 灰度值b 在图像中显示为一亮点,a 值显示为一暗点。如果Pa 和图像 均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。当Pa 为零时,表现为“盐”噪声;当Pb 为零时,表现为“胡椒”噪声。图像中的噪声往往是和信号交织在一起的尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓线条等模糊不清,从而使图像质量降低。第2章、图像平滑方法2.1 空域低通滤波 将空间域模板用于图像处

3、理,通常称为空间滤波,而空间域模板称为空间滤波器。空间域滤波按线性和非线性特点有:线性、非线性平滑波器。线性平滑滤波器包括领域平均法(均值滤波器),非线性平滑滤波器有中值滤波器。2.1.1 均值滤波器 对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑技术。这种方法的基本思想是,在图像空间,假定有一副NN个像素的原始图像f(x,y),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。经过平滑处理后得到一副图像 g(x,y), 其表达式如下: 式中: x,y=0,1,2,,N-1;s为(

4、x,y)点领域中点的坐标的集合,但不包括(x,y)点;M为集合内坐标点的总数。领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。其公式如下: 式中:T为规定的非负阈值。 上述方法也可称为算术均值滤波器,除此之外还可以采用几何均值滤波器、谐波均值滤波器和逆谐波均值滤波器。几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图像细节。谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。它善于处理像高斯噪声那样的其他噪声。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个

5、缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。2.1.2 中值滤波器中值滤波是一种常用的去除噪声的非线性平滑滤波处理方法,其基本思想用图像像素点的领域灰度值的中值来代替该像素点的灰度值。二维中值滤波可以用下式表示: 式中:A为滤波窗口; 为二维数据序列。其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图像的统计特性,这也带来不

6、少方便,但对一些细节多,特别是点、线、尖顶细节较多的图像不宜采用中值滤波的方法。如果希望强调中间点或距中间点最近的几个点的作用,则可采用加权中值滤波。其基本原理是改变窗口中变量的个数,可以使一个以上的变量等于同一点的值,然后对扩张后的数字集求中值。这种方法比简单中值滤波性能更好地从受噪声污染的图像中恢复出阶跃边缘以及其他细节。另有一种可以处理具有更大概率的冲激噪声的是自适应中值滤波器,在进行滤波处理时,能依赖一定条件而改变领域的大小。其优点是在平滑非冲激噪声时可以保存细节,所以既能除去“椒盐”噪声,平滑其他非冲激噪声,还能减少诸如物体边界细化或粗化等失真。2.2 频域低通滤波在分析图像信号的频

7、率特性时,对于一副图像,直流分量表示了图像的平均灰度,大面积的背景区域和缓变部分是低频分量,其边缘、细节、跳跃部分以及颗粒噪声都代表图像的高频分量。频域低通滤波就是除去其高频分量就能去掉噪声,从而使图像得到平滑。利用卷积定理,可以写成以下形式: G(u,v)=H(u,v)F(u,v)式中,F(u,v)是含噪图像的傅立叶变换,G(u,v)是平滑后图像的傅立叶变换,H (u,v)是传递函数。利用H(u,v)使F(u,v)的高频分量得到衰减,得到G(u,v)后再经过反变换就得到所希望的图像g(u,v)了。低通滤波平滑图像的系统框图如下所示:图3-1 图像频域低通滤波流程框图低通滤波法又分为以下几种:

8、(1) 理想低通滤波器(ILPF)一个理想的低通滤波器的传递函数由下式表示: 式中D0是一个规定的非负的量,它叫做理想低通滤波器的截止频率。D(u,v)代表从频率平面的原点到(u ,v)点的距离,即: 理想低通滤波器在处理过程中会产生较严重的模糊和振铃现象。(2) 巴特沃思低通滤波器(BLPF)n 阶巴待沃思滤波器的传递系数为 DLPF与ILPF不同,它的通带与阻带之间没有明显的不连续性,因此它没有“振铃”现象发生,模糊程度减少,但从它的传递函数特性曲线H(u,v)可以看出,在它的尾部保留有较多的高频,所以对噪声的平滑效果还不如ILPF(理想低通滤波器)。(3) 指数滤波器(ELPF)其传递函

9、数表示为: 由于ELPF 具有比较平滑的过渡形,为此平滑后的图像没有“振铃”现象,而ELPF 与BLPF 相比它具有更快的衰减特性,所以经ELPF 滤波的图像比BLPF 处理的图像稍微模糊一些。(4) 梯形滤波器(TLPF)梯形滤波器的传递函数介于理想低通滤波器和具有平滑过渡带的低通滤波器之间,它的传递函数为: 式中:D0为梯形低通滤波器截止频率,D0、D1须满足D0D1,它的性能介于ILPF和BLPF之间,对图像有一定的模糊和振铃效应。第三章、图像平滑处理与调试本课程设计中程序运行的环境是windows平台,并选用MATLAB作为编程开发工具,MATLAB是一种向量语言,它非常适合于进行图像

10、处理。3.1 模拟噪声图像 图像增强操作主要是针对图像的各种噪声而言的,为了说明图像处理中的滤波方法和用途,需要模拟数字图像的各种噪声来分析滤波效果。MATLAB图像处理工具箱提供的噪声添加函数imnoise,它可以对图像添加一些典型的噪声。其语法:J=imnoise(I,type)J=imnoise(I,type,parameters)其功能是:返回对原图像I添加典型噪声的图像J,参数type和parameters用于确定噪声的类型和相应的参数。三种典型的噪声:type=gaussian时,为 高 斯 噪 声;type=salt&pepper时为椒盐噪声;type=speckle时为乘法噪声

11、;图像数据读取函数imread从图像文件中读取图像数据。其基本调用格式如下:I=imread(文件名,图像文件格式)其功能是:将文件名指定的图像文件读入I中。I=imshow(A)其功能是显示图像A。如下程序就实现了3种噪声污染了的图像:I=imread(lena.bmp); %读取图像I1=imnoise(I,gaussian); %加高斯噪声I2=imnoise(I,salt & pepper,0.02); %加椒盐噪声I3=imnoise(I,speckle); %加乘性噪声subplot(221),imshow(I); %显示图像Isubplot(222),imshow(I1);sub

12、plot(223),imshow(I2);subplot(224),imshow(I3); 运行结果如下:图3-1噪声污染的图像3.2均值滤波法 在MATLAB图像处理工具箱中,提供了imfilter函数用于实现均值滤波,imfilter的语法格式为: B=imfilter(A,H)其功能是,用H模板对图像A进行均值滤波,取平均值滤波模版为H1=1/91 1 1;1 1 1;1 1 1;H2=1/251 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;1 1 1 1 1;分别以这两个平均值滤波算子对图3-1中的四幅图像进行滤波操作。取H1,程序如下:I=imread

13、(lena.bmp);I1=imnoise(I,gaussian);I2=imnoise(I,salt & pepper,0.02);I3=imnoise(I,speckle);H1=ones(3,3)/9; %33领域模板J=imfilter(I,H1); %领域平均J1=imfilter(I1,H1);J2=imfilter(I2,H1);J3=imfilter(I3,H1);subplot(221),imshow(J);subplot(222),imshow(J1);subplot(223),imshow(J2); subplot(224),imshow(J3); 运行结果如图3-2 取

14、H2,程序如下:I=imread(lena.bmp);I1=imnoise(I,gaussian);I2=imnoise(I,salt & pepper,0.02);I3=imnoise(I,speckle);H2=ones(5,5)/25;J=imfilter(I,H2);J1=imfilter(I1,H2);J2=imfilter(I2,H2);J3=imfilter(I3,H2);subplot(221),imshow(J);subplot(222),imshow(J1);subplot(223),imshow(J2);subplot(224),imshow(J3); 运行结果如图3-3

15、:图3-2 图3-1中图像经过平均值算子H1滤波后图像图3-3 图3-1中图像经过平均值算子H2滤波后图像比较处理后的图像结果可知,领域平均处理后,图像的噪声得到了抑制,但图像变得相对模糊,对高斯噪声的平滑效果比较好。领域平均法的平滑效果与所选用的模板大小有关,模板尺寸越大,则图像的模糊程度越大。此时,消除噪声的效果将增强,但同时所得到的图像将变得更模糊,图像细节的锐化程度逐步减弱。3.3 中值滤波法MATLAB图像处理工具箱提供了medfilt2函数用于中值滤波。其语法格式为:B=medfilt2(A)其功能为:用33的滤波窗口对图像A进行中值滤波;B=medfilt2(A,m,n)其功能是

16、:用大小为mn的窗口对图像A进行中值滤波;B=medfilt2(A,indexed,.)其功能为:对索引图像A进行中值滤波; 可运行以下程序实现:I=imread(lena.bmp);I1=imnoise(I,gaussian);I2=imnoise(I,salt & pepper,0.02);I3=imnoise(I,speckle);J1=medfilt2(I1,3,3); %33中值滤波模板J2=medfilt2(I2,3,3);J3=medfilt2(I3,3,3);J4=medfilt2(I1,5,5); %55中值滤波模板J5=medfilt2(I2,5,5);J6=medfilt

17、2(I3,5,5);figure,subplot(121),imshow(J1);subplot(122),imshow(J2);figure,subplot(121),imshow(J3);subplot(122),imshow(J4);figure,subplot(121),imshow(J5);subplot(122),imshow(J6);运行结果如下: 图3-4 受到高斯、椒盐及乘法噪声污染的图像经不同模版的中值滤波后的图像由图3-4可知,此方法能够非常好地将椒盐噪声去除掉,可见中值滤波方法对于椒盐噪声或脉冲式干扰具有很强的滤除作用,但对于高斯和乘性噪声效果不佳。与图3-2、图3-3

18、相比,当噪声为椒盐噪声时,中值滤波器的效果比均值滤波好。因为这些干扰值与其邻近像素的灰度值有很大的差异,经过排序后取中值的结果就将此干扰强制变成与其邻近的某些像素值一样,从而达到去除干扰的效果。但是由于中值滤波方法在处理过程中会带来图像模糊,所以对于细节丰富,特别是点、线和尖顶细节较多的图像不适用。3.4 频域低通滤波法 频域低通滤波处理噪声图像的方法如下:首先构建二维滤波器d;f1,f2=freqspace(25,meshgrid);Hd=zeros(25,25);d=sqrt(f1.2+f2.2)0.5; %0.5为截止半径大小Hd(d)=1;h=fsamp2(Hd);figure,fre

19、qz2(h,64,64); 图3-5 用频率采样法构建的二维滤波器然后用所构建的二维滤波器对以上图像进行滤波I=imread(lena.bmp);I1=imnoise(I,gaussian);I2=imnoise(I,salt & pepper,0.02);I3=imnoise(I,speckle);J=imfilter(I,h,replicate);J1=imfilter(I1,h,replicate);J2=imfilter(I2,h,replicate);J3=imfilter(I3,h,replicate);subplot(221),imshow(J);subplot(222),ims

20、how(J1);subplot(223),imshow(J2); subplot(224),imshow(J3);其运行结果如下图:图3-6 图3-1中图像经过二维滤波器h滤波后图像 频域低通滤波具有更好的选择性,对噪声在一定范围内也可以起到抑制作用,同时也对图像的边缘细节和高频信息分量有更好的保持作用。使得图像在轮廓上显得更清晰。 第四章、总结与体会 图像平滑即消除噪声是图像处理中一个重要的方面,由于图像受到干扰而产生噪声的原因是多方面的,在对一幅图像进行平滑处理前,必须仔细分析其产生噪声的原因。选择合适的平滑方法,才能既消除图像噪声,又不使图像边缘轮廓或线条变模糊,经过这样的处理后,图像更

21、符合人的视觉特性。随着数字图像处理的广泛应用,一些在人工智能、控制领域中成熟或前沿的数学模型如神经网络、模糊数学、自适应控制等相关技术在数字图像处理中逐渐采用,从而使建立的图像处理数学模型效率更高、性能更好。这些方法在不同程度上增强了去噪效果,但也带来了运算复杂、适用面窄等缺点。因而我们在选择消除噪声方法时,必须综合考虑各种因素,选择最适合的平滑方法。 通过本次课程设计,不仅强化了自己原有的知识体系,对数字图像输了这门课程也有了更深一步的认识,也扩展了自己的思维。通过Matlab程序的编写与比较,认识到不同方法对图像的去噪效果是不同的。不同的平滑算法适应于特定类型的噪声模型,实际应用中应该根据实际图像中包含的噪声情况灵活地选取适当的平滑算法。课程设计是一个通过思考、发问、自己解惑并动手、提高的过程。我会在以后的学习中不断学习,积累经验,完善自己。参考文献1 杨帆,等数字图像处理与分析北京:北京航空航天大学出版社,2007.102 闫娟.数字图像的平滑处理方法研究.软件导刊,2009.013 平丽.图像平滑处理方法的比较研究.信息技术,2010.014 梁一江.图像平滑处理方法初探及简单的算法介绍.才智,2009.04

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1