1、粮油储藏基础知识第一讲粮油储藏基础知识一、粮堆的主要物理性质与储藏的关系 1二、粮堆温度、湿度、水分和气体成分的变化规律 8三、粮堆的结露、预防和处理 17四、微生物与储粮发热霉变 20五、储粮生理 21六、粮油储藏技术 33七、小麦、玉米的储藏 44八、粮油仓储管理 49第一讲 粮油储藏基础知识粮油储藏是减少粮油在储藏过程中损失的一项十分重要的工作。粮油 在储藏过程中的损失,是指数量和质量方面的损失,由此也就确定了粮 油储藏的基本任务是:第一,防止不应有的数量损耗;第二,尽量保持 粮油的原有品质;第三,节约保管费用,提高经济效益。同时应坚持 “以防为主,综合防治”的保粮方针。一、粮堆的主要物
2、理性质与储藏的关系粮堆物理性质是指粮油在储存、运输过程中反映由的多种物理属性。粮 堆是粮油储藏的基本形态,进入储藏状态的粮油籽粒均堆聚成粮堆,储 藏期间粮油发生的各种变化过程也均在粮堆内进行。因此粮堆所具有的 各种物理属性是影响粮油储藏稳定性的重要因素,在一定程度上决定着 粮油的储藏品质,所以,在粮油储藏中,必须首先了解粮堆的物理性质。(一)散落性与自动分级1、散落性(1)散落性的概念粮粒在从一定高度自然落下形成粮堆时,向四面流散成为圆锥体的性 质称为粮油的散落性。粮油散落性的大小通常用静止角a表示。静止角是指粮油由高点落 下,自然形成圆锥体的斜面与底面水平线之间的夹角。静止角越大,表 示粮油
3、散落性越小;静止角越小表示粮油散落性越大。反映粮油散落性大小的另一个指标是自流角B o自流角是粮粒在不同 材料的斜面上开始移动下滑时,该斜面的倾角。自流角是一个相对值, 它与粮粒自身的特性和斜面材料有关。(2)散落性的影响因素粮粒的物理状态粮粒的大小、形态、表面光滑程度等影响粮油的散落性。粒大、饱 满、圆形籽粒、表面光滑的粮油散落性大,反之,则散落性小。如油菜 籽、大豆等粮油的散落性较大,而小麦、稻谷等粮油的散落性较小。下 表给由了主要粮种的静止角。粮和静止角(0 )变动范围小麦23 3815玉米30 4010粮油的含水量同种粮油的含水量不同,散落性亦不同。含水量愈高,粮粒间的摩擦力愈大,散落
4、性会相应降低,具降低的程度与含水量的增加成正相关。根据这个关系,用手插入粮堆或手握粮油摩擦时的感觉判断散落性,可 在粮油征购时估测粮油的含水量。杂质粮油中的杂质含量及特征会影响粮油散落性。杂质越多,特别是各 种轻浮杂质如麦秸、壳和稻杆等更会大大降低粮油的散落性。另外,粮油在储藏期间因保管不善,引起发热、霉变、发芽或结块 时,也会使粮油的散落性降低,甚至完全丧失散落性。(3)仓房的安全使用散落在粮仓里的粮食,由于仓壁的限制不能自然散开,粮堆就对仓壁 产生一种推力,这种力称为侧压力。粮堆越高,侧压力就越大。侧压力 的大小是确定粮仓堆粮线高度的重要依据。由于不同品种的粮食,具散落性大小不同,对仓壁所
5、产生的侧压力大 小也就不同。因此,同一仓房,在储粮品种轮换时,应重新计算装粮线 的高度,以确保仓房的安全使用。侧压力的大小及装粮线高度的计算,可通过下面的简化公式求得:P = h2 tg2(45o 2)式中:P每米宽度仓壁上所受的侧压力(千克/米)V 一粮食容量(千克/米3)h 一粮堆高度(米)a 静止角(取最小值)(4)散落性与粮食储藏的关系散落性的变化可在一定程度上反映粮食的储藏稳定性。安全储藏的粮食,总是具有良好的散落性。如果粮食由汗、返潮、水分 增加、虫霉滋生,散落性就会大大降低。因此根据粮食散落性,可估测 粮食的储藏稳定状态,了解粮食劣变情况。散落性是确定清理、输送设备倾角的依据如用
6、溜筛清理粮食和安装自流管时,其倾角应大于粮食的自流角;用输 送机进粮时,输送机的倾角须小于粮食的自流角,粮食才不会倒流。散落性大小影响粮食的运输装卸过程散落性大的粮食,在运输过程中容易流散,对于装车装船、入仓由仓 都较方便,可节省劳力和时间。2、自动分级(1)自动分级的概念自动分级是在散落性的基础上形成的。一般来说,任何一批粮食,都 是非均质的聚集体,其质量总不会绝对均一整齐。粮粒有饱满的和瘦瘪 的、完整的和破碎的,形态多种多样,还含有各种各样的杂质。在散落 时彼此受到的摩擦力和重力都不相同,运动状态也不同。因此粮油在移 动、震动或散落的过程中,同一类型的粮食和杂质就集中在粮堆同一部 位,不同
7、类型的则集中在粮堆不同部位,从而引起粮堆组成成分的重新 分布,这种现象称为自动分级。如用汽车或板车运送粮油,在不平的道 路上行驶时,因受车辆颠簸,轻的粮粒或杂质就会转移到上面,重的会 沉到下面。(2)自动分级的影响因素和类型粮油自动分级的发生与粮油输送移动的距离、作业方式、仓房类型等密 切相关。粮油移动距离不同,作业方式不同,自动分级状况不同;仓房 不同,自动分级也不同。因此,自动分级按其作业方式、仓房类型和粮 堆形成的条件可大体分为四种情况:自然流散形成粮堆粮油从高点自然流散成粮堆时,粮粒与粮粒之间、粮粒与杂质之间以 及杂质与杂质之间受到的重力、摩擦力不同,同时落下时受到的气流浮 力也不相同
8、。这些差异相互影响的综合结果使饱满的粮粒和较重的杂质 落在圆锥体的中心部位,而较轻的、破碎的粮粒及杂草种子就沿着斜面 下滑至圆锥体的底部。因此,随着圆锥体的不断扩大,杂质就在圆锥粮 堆的底部不断积累,最终形成基底杂质区。房式仓入粮房式仓粮油入库一般有输送机进粮和人工入粮两种。输送机进粮又分移 动式和固定式。若移动式入库,一般是输送机头先从仓房山墙处开始, 随入粮逐步由内向外退移。因此,饱满的粮粒和沉重的杂质多汇集于机 头落下的粮堆中央部位;沿输送机两侧的粮油含有较多的瘪粒和较轻的 杂质,形成带状杂质区。若固定式入库,粮油入库时就有多处卸粮点, 那么象自然形成粮堆一样,在一个仓房内部形成多个圆窝
9、状杂质区,即 每个卸粮点有一个基底状杂质区。房式仓人工入粮时,由于倒粮点分散,边倒边匀,自动分级不明显, 质量组合比较均匀按照自动分级形成的原因,自动分级又可归纳为重力分级、浮力分级 和气流分级。重力分级的情况明显地发生在有震动运输的过程中。如散装原粮长途 运输后,大而轻的物料就会浮到最上面,细而重的物料就会沉到底部, 而较细、较轻、较大、较重的物料分于两者之间,从而形成了分层的现 象。浮力分级是说明粮粒下落过程受力不同而造成的自动分级。气流分级通常发生在露天堆粮的过程中,O当输送机在风天卸粮时, 在下风处就会聚积较多的轻杂质,从而形成自动分级现象。这种情况在 皮带输送机、扬场机的作业中都会发
10、生。(3)自动分级与储藏的关系自动分级现象破坏了粮堆组成成分的均匀性,使粮堆组分重新分布, 杂质集中,这对安全储粮十分不利。杂质较多的部位,往往水分较高, 空隙度较小,虫霉容易滋生,是极易发热霉变的部位,如未能及时发现 还能蔓延危及整堆粮油。因此,对自动分级严重的地方,要多设检查层 点,密切注意粮情变化。自动分级中灰尘集中的部位,空隙度小、吸附性大,在熏蒸时,药剂 渗透困难,影响杀虫效果。同时,在通风降温降水过程中,也因空气阻 力的加大,使风速达不到规定的要求,造成局部温度、水分偏高。在粮油储藏中也可利用自动分级有利的一面。如利用气流分级清理粮 油,使用筛子震动去掉重杂质等。防止自动分级最积极
11、的办法是预先清理粮油,提高粮油净度和均一性。止匕外,在粮仓上安装一些机械装置,使粮油均匀地向四周散落,也 可减轻自动分级现象。如皮带输送机头部的抛粮机构,在卸粮时扇面不 断旋转,借助粮流的惯性冲力,将粮油均匀抛生。也可以在入粮口安装 锥形散粮器或旋转散粮器。(二)吸附性和吸湿性1、吸附性所有粮油籽粒都具有吸附各种物质的蒸气和气体分子的特性,称为 吸附性。由于粮食具有吸附性,所以,在储藏过程中要严禁与化肥、农药以及 其他易使染毒或感染异味(如汽油、煤油等)的物品混存。熏蒸处理的粮 食,要待毒气释放到合乎卫生标准后方可由库供应。2、吸湿性和平衡水分(1)吸湿性吸湿性是指粮油吸附和解吸水汽的性能。它
12、是粮油吸附性的一种具体 表现。在储藏期间,粮油水分的变化主要与粮油吸湿性能有关。所以, 吸湿性与粮油的储藏稳定性及储藏品质变化密切相关,与粮油的发热霉 变、结露、返潮等现象亦有直接关系。因此,粮油吸湿特性是粮油储藏 中最重要的变量因素之一。粮油吸附水汽的原因,除了它具有多孔毛细管结构外,更重要的是由 于粮油中含有很多亲水胶体。淀粉和蛋白质是粮油中的主要成分,含有 很多能与水作用的极性基团(如-OH -COO第),它们可以通过氢键与水 分子相互作用。(2)平衡水分平衡水分的概念粮油在储藏过程中,由于对水汽不断的吸附和解吸,粮油含水量就随 着外界环境而时增时减。在一定的温湿度条件下,当粮油内外的水
13、蒸汽 分压相等时,粮油的吸附和解吸量相等,达到吸附平衡状态,此时粮油 的含水量称为该条件下粮油的平衡水分。与该水分相平衡的空气相对湿 度称为平衡相对湿度。在粮油储藏中,常以粮油的平衡水分作为自然通风、机械通风或密闭 储藏的依据,在干燥粮油时也要根据平衡水分这个因素来考虑降低水分 的程度,不致因过分干燥而后来又吸湿返潮。所以,对通风、密闭和干 燥等储藏技术措施的掌握都与粮油的平衡水分有关。下表给由了常见粮油不同温湿度下的平衡水分常见粮油不同温湿度下的平衡水分粮种粮温(C)相对湿度(为2030405060708090稻307.138.5110.00108811.9313.1214.6617.13谷
14、257.408.8010.2011.1512.2013.4014.9017.30207.549.1010.3511.3512.5013.7015.2317.83大307.599.2110.5811.6112.5113.9015.3517.72米257.709.4010.701108512.8014.2015.6518.20207.989.5910.9012.0213.0114.5716.0218.70小麦3025207.417.557.808.889.009.2410.2310.3010.6811.4011.6511.8412.5412.8013.1014.1014.2014.3015.721
15、5.8516.0219.3419.7019.95玉307.859.0011.1311.2412.3913.9015.8518.30米258.009.2010.3511.5012.7014.2516.2518.60208.239.4010.7011.9013.1914.9016.9219.20大305.005.726.407.178.8610.6314.5120.15豆256.358.009.0010.4511.8014.0016.5519.40205.406.457.108.009.5011.5015.2920.28平衡水分的影响因素粮油的吸湿性和平衡水分的大小随环境的温度、湿度和粮油品种的不
16、 同而不同。同一种粮油,在温度一定的条件下,平衡水分随相对湿度的 增加而增大;相对湿度一定时,平衡水分随温度的升高而减小;在温度 和相对湿度都一定的条件下,平衡水分因粮油种类和品种而不同。I.相对湿度的影响在一定温度下,平衡水分与相对湿度的关系,虽然是随相对湿度的增 加而增大,但并不是直线关系,基本上是一个“ S”型曲线关系。这种在 一定温度下,表示粮油吸湿性、平衡水分与相对湿度之间相互关系的曲 线称为吸湿等温线。n.温度的影响相对湿度一定的条件下,温度对粮油吸湿性的影响与对气体的吸附影 响是一致的。即随着环境温度的升高,吸附量减小,平衡水分下降田.粮种的影响在温度一定的条件下,平衡水分的高低
17、,就是粮油吸湿性能大小的具 体表现。在一定的相对湿度下,粮油吸附水汽的数量,主要取决于粮油 化学成分的性质和含量。粮油中的蛋白质和淀粉都是亲水胶体,所以含 蛋白质、淀粉多的粮油吸湿性强,在同样的温湿度下,平衡水分较高。 而含脂肪等疏水成分多的粮油吸湿性差,平衡水分较低。所以油料的平 衡水分明显小于禾谷类。另外,同一粮粒不同部位的平衡水分也不相同。如胚部的平衡水分就 比胚乳要大。(三)气流性1、粮堆气流的形成 T r 1 - nr t粮堆各部位及粮堆内外,常常存在温差和 二门二 . M气压差,它们是形成储粮气流运动的主要原因。由于粮粒的存在,粮堆空隙中分子运动阻力较大,加上粮堆常处于 相对静止、
18、相对密闭的环境中,所以储粮气体流动速度非常缓慢。在散 装粮堆中,气流速度只有0.11毫米/秒。所以,储粮气流又称为微气 流。粮堆气流不但在运动,而且在运动中变化,它象一条运输线,不断向 粮堆送入或带由水分、能量、氧、二氧化碳及熏蒸毒气等物质。2、粮堆气流运动的一般规律热核心粮气流。当粮温高于仓温23c时,粮堆中间部位的气体由于有较高的温度,作上升运动,周围气体沿外围下沉,从而形成热核心粮堆气流。(见图1) 图1冷核心粮气流。当粮温低于仓温23c时,粮堆中间部位的粮温较低,气流作下沉运动,周围气体沿外围作上升运动,而形成冷核心粮 图2堆气流。(见图2)粮堆气流的运动,会诱发水分转移、粮堆结露等不
19、利于粮食安全储 藏的现象发生。在投药熏蒸时,可利用粮堆的气流特性,选择合适的施 药点(如热核心粮堆熏蒸时,投药点设在粮堆中下部;冷核心粮堆选择从 粮堆上部投药),使毒气在气流的运载下,向整个粮堆均匀地扩散和渗 透。二、粮堆温度、湿度、水分和气体成分的变化规律温度、湿度和气体成分是影响粮油安全储藏的主要因素,是粮食、昆虫和微生物等生物成分生存的必要条件, 可称为“生命三要素”。在粮油储藏过程中,只要控制住其中一个因 素,就能达到抑制粮油、储粮害虫和微生物生理活动,实现粮油安全储 藏的目的。因此,了解温度、湿度和气体成分的变化规律并加强管理, 对于及时掌握粮情的变化和发展,采取积极、正确、有效的储
20、藏措施, 确保粮油安全储藏具有十分重要的意义。(一)温度的变化粮油储藏中的温度包括外界空气温度、仓内空气温度和粮堆温度,简 称气温、仓温和粮温,通常称为储粮“三温”。正常情况下,“三温” 变化的一般规律是气温影响仓温变化,仓温影响粮温变化,粮温变化主 要受气温和仓温变化的影响。1、气温的变化(1)气温概述气温是指空气的冷热程度。温度数量的表示法称为温标,是衡量温 度高低的尺度。常用的温标有摄氏温标和华氏温标两种。摄氏温标是以 纯水在标准大气压下的冰点为。度,沸点为100度,中间划分为100等 份,每一等份代表1度,用表示。华氏温标是以纯水在标准大气压 下的冰点为32度,沸点为212度,中间划分
21、为180等份,每一等份代表1 度,用表示。摄氏温标和华氏温标的换算关系为:C= (F32) 或 0F=C + 32在仓储管理中,所使用的温标一般为摄氏温标。(2)气温变化的一般规律日变:气温在一昼夜间发生的变化。在正常情况下,日变最高值由 现于午后二时左右,最低值由现于日由之前。一昼夜间气温最高值与最 低值之差称为气温的日变振幅,也称日较差。年变:气温在一年中各月间发生的变化。年变的最高月通常由现于 七、八月份,最低月由现于十二月和次年一月份,沿海地区由现于一、二月份。一年中最高月份和最低月份的平均气温之差称为气温的年变振幅, 也称年较差。气温的高低,受地理位置、季节、地形、气候等因素的影响。
22、2、仓温变化仓温变化主要受气温影响,也有日变和年变规律。通常仓温日变的最 高值与最低值的由现比气温晚一、二小时,年变最高值和最低值的由现 比气温晚一个月;仓温最高值低于气温最高值,仓温最低值高于气温最 低值。因此,仓温变化的日变振幅与年变振幅均较气温小,但也与仓房 结构和通风情况有关。铁皮仓和简易仓因导热系数大,隔热性能差,受 气温影响大,仓温变化与气温变化接近;以砖石结构为主的平房仓或地 下仓,密闭性能好,受气温影响小,仓温较稳定;止匕外,外墙刷白的仓 温比不刷白的低13C。3、粮温变化正常粮温变化是指粮堆生物体的生理活动较弱,产生的热量较小,粮 温的变化主要受气温和仓温的影响。正常粮温变化
23、主要受气温和仓温影响,但由于粮食是热的不良导体, 粮堆中空气的流动一般又很微弱,因此,正常粮温变化远远滞后于气 温、仓温变化,且日变振幅和年变振幅也较小。(1)粮温的日变化粮温日变化的最高值与最低值的由现比气温晚二、三个小时以上,其 日变振幅较小(0.51C),且仅限于粮堆表层不超过30cm深处,中、下 层的粮温日变化不明显。(2)粮温的年变化粮温在一年中随季节气温的变化而周期性变化,其年变化的最高、最 低值的由现通常较气温晚一、二个月以上,且年变振幅小于气温和仓温 的年变振幅。只是在季节转换时期,才会由现粮温与气温相接近的现 象。在冬季,粮温一般下层 中层,上层,夏季则相反;而在春、秋季节,
24、 上层粮温变化较大,同时粮温的最高、最低值又由现在相邻的上、中 层。此时,高温粮与低温粮相遇,空气的对流作用加强,湿热扩散使得 水分容易在粮堆莫一部位聚积,可造成粮堆结露,严重影响储粮稳定。 因此,在春、秋气温转换季节,要加强粮情检查,尤其在秋季,更要勤 检查,采取必要措施,防止粮面“结露”。(3)影响粮温变化的因素正常粮温变化除主要受气温、仓温影响外,还受仓房围护结构、粮 油堆装形式、粮油所处方位、粮堆生物体的生理活动、粮油入仓原始温 度等因素的影响。掌握粮温的正常变化规律,对于检测粮温、分析粮 情、判断储粮是否安全等具有十分重要的意义。仓房围护结构:仓房围护结构不同,储粮温度受外温影响的程
25、度也 不同。围护结构越大,越严密,隔热性能越好,粮温受外温的影响就越 小;反之,所受影响就越大。如高大平房仓,与矮小的土圆仓、简易 仓、钢板结构立筒仓等仓型相比较,其春暖后粮温上升缓慢,夏季的粮 温也低得多;而在冬季,高大平房仓的个别部位可能残留高温,使虫、 霉繁殖为害。粮油堆装形式:粮油堆装形式常见的有包装和散装,堆装形式不同 对粮温变化的影响也不同。包装粮堆的空隙比散装粮堆大,空气对流作 用强,受外温影响较大。据试验,其春、秋两季的粮温每旬可升降4 5CO而散装粮由于粮堆空隙较小,粮温变化较缓慢。粮油所处方位:仓内不同位置的粮油温度也不同,一般规律是向阳 面背阳面。粮堆生物体生理活动:粮堆
26、中的粮粒、储粮害虫和微生物等生物体 进行呼吸作用,消耗营养物质,并向粮堆中释放热量。呼吸作用的强 弱,释放能量的多少又受粮油含水量、粮温、气体成分和粮质等条件制 约。在一般情况下,产生的热量较少,并通过热传递向粮堆外散发后, 对粮温无太大影响。但在非正常情况下,各种生物体旺盛的呼吸作用, 产生大量热量,又不能及时散发由来而造成热量在粮堆中聚积使粮温显 着升高,从而造成粮堆“发热”。入仓原始粮温:不同季节或不同方式入仓的粮油具有不同的原始粮 温,入仓后的变化也不同。如秋粮入仓粮温比夏粮要低;烘干后未经冷 却的粮油入仓后,都具有较高的粮温,而且温度变化也极不规则。(二)湿度变化1、湿度的概念及表示
27、方法湿度是指空气中水汽含量的多少。湿度的表示方法有两种,即绝对湿 度和相对湿度。(1)绝对湿度每立方米空气中实际含有的水汽量称为绝对湿度,用“”表示,单位是g/m3。在一定温度下,每立方米空气中所能容纳的最大限度的水汽量称为饱 和湿度,也称饱和水汽量,用“中饱”表示。空气中容纳水汽量的能力 随温度的升高而增加。空气中水汽含量越多,水汽压力就越大,所以绝对湿度和饱和湿度也 可以用水汽压力表示,单位是“ pa。不同温度下空气饱和水汽量与饱和水汽压见下表。空气饱和水汽量与饱和水汽压温度饱和水汽压饱和水汽吊温度 ()饱和水汽压饱和水汽吊温度 ()饱和水汽压饱和水汽吊-201041. 07848136.
28、 33028378426. 981-191131. 17058726. 76129401028. 447-181271. 26969357. 21930424830. 036-171391. 375710017. 70331449831. 702-161521. 489810738. 21532476033. 446-151671. 611911488. 85733503735. 272-141831. 8821012289. 32934532637. 183-132001. 9421113139. 93435563039. 183-122192. 03212140310. 574365949
29、41. 274-112402. 19213149911. 24937528443. 461-102612. 36314159911. 96138663445. 746-9(2285对减度54815170512. 71239700148. 133每立方米空气中实际含有的水汽量(即绝对湿度)与同温度下饱和水汽 量(即饱和湿度)的百分比称为相对湿度,通常用“RHf表示。R* =/饱 x 100%式中:一一莫温度下空气的绝对湿度(g/m)饱 式一同温度下空气的饱和湿度(g/n3)相对湿度反映了空气中实际含有的水汽接近饱和状态的程度,因此可直 接表示空气的干湿程度。相对湿度越高,表示空气中实际含有的水汽量 与饱和水汽量越接近,空气就越潮湿,粮油水分越不易蒸发,如阴雨 天;反之,则表示当时温度下空气中含有的水汽量与饱和水汽量相差越 远,空气越干燥,粮油水分容易蒸发,如晴天。影响相对湿度变化的决定性因素有两个:一是空气中实际含有水汽量 (绝对湿度)的多少,二是温度的高低。在同一温度下,空气中实际含有 的水汽量愈多,相对湿度就愈大,即同温度下相对湿度与绝对湿度成正 比关系。而在空气中实际含水汽量相同的情况下,温度愈高,相对湿度 愈低,即空气中实际含水汽量一定时,相对湿度与温度成反比关系。仓储管理中所用的湿度一般指的是相对湿度。2、“三湿”变
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1