ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:62.95KB ,
资源ID:11775082      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11775082.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(食品化学实验指导书.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

食品化学实验指导书.docx

1、食品化学实验指导书食品化学实验指导书编写整理人员:丁长河 鲁玉杰 王争艳 布冠好 杨国龙 田双岐河南工业大学 粮油食品学院 2013年4月实验一 食品水分活度的测定一、实验目的掌握食品水分活度的测定原理和方法;学习一种作图定量的方法。二、实验原理样品分别在水分活度(Aw)较高和较低的标准饱和溶液中扩散平衡后,根据样品质量增加(在较高Aw标准饱和溶液平衡后)或减少(在较低Aw标准饱和溶液平衡后)的量,可计算出样品的Aw值。三、实验材料与仪器1试剂标准水分活度试剂(根据所选样品,从表2-1中选出四种,其中两种试剂的Aw值大于样品的Aw,另两种试剂的Aw值小于样品的Aw)。表1-1 标准水分活度试剂

2、试剂名称Aw试剂名称Aw试剂名称Aw重铬酸钾K2Cr2O7H2O0.980硝酸钠NaNO30.737氯化镁MgCl26H2O0.330硝酸钾KNO3H2O0.924氯化锶SrCl2H2O0.708乙酸钾KAcH2O0.224氯化钡BaCl20.901溴化钠NaBr0.577氯化锂LiClH2O0.110氯化钾KCl0.842硝酸镁Mg(NO3)26H2O0.528氢氧化钠NaOHH2O0.070溴化钾KBr0.827硝酸锂LiNO33H2O0.470氯化钠NaCl0.752碳酸钾K2CO32H2O0.4272器材天平(1/10000),康维微量扩散皿,铝箔,恒温培养箱。四、实验步骤1样品处理随

3、机采取样品1020g,迅速切碎混匀,从中取出约1g,置于预先精确称量过的铝皿或铝箔(直径25mm)上,精称后作为试样。称取四份。2测定方法取四只康维皿,于皿的四周涂好凡士林。将试样迅速放人皿的内室,将Aw值大于或小于试样的四种饱和溶液各5mL分别置于四只皿的外室,加盖密封,在(250.5)温度下放置(20.5)h。取出铝皿(铝箔),精确称量后求出试样的增减质量。五、实验结果1公式法试样的水分活度为:Aw=(bXaY)(XY)式中,a为饱和溶液A的Aw值;b为饱和溶液B的Aw值;X为使用饱和溶液A时,试样质量的增加量,g;Y为使用饱和溶液B时,试样质量的减少量,g。注:从四个饱和溶液中,选取大于

4、(A)和小于(B)样品Aw值的各一份溶液参与计算。2作图法用坐标图求出水分活度值:纵坐标为质量增或减的量(mg),横坐标为各标准试剂的水分活度值,作出标准试剂水分活度值变化的曲线(图1-1),连接各点得到近似的一条直线,此线与横坐标的交点即为试样的水分活度值。六、注意事项1取样要在同一条件下进行,操作要迅速。2试样的大小和形状对结果的影响较小。3康维皿的密封性要好。图1-1 样品Aw测定图实验二 淀粉的糊化和凝胶化实验一、实验目的1了解淀粉糊化和凝胶形成作用的不同。2了解直链支链淀粉比改变对淀粉糊黏度和淀粉凝胶强度的影响。3了解淀粉浓度、类型、糊化温度以及蔗糖、有机酸对淀粉糊化及凝胶形成的影响

5、。二、实验原理常见的食用淀粉包括谷物淀粉、块茎淀粉和豆类淀粉等。淀粉处于淀粉粒状态是不能食用的,不论是为了去除生淀粉的风味、提高淀粉的消化性,还是发挥淀粉的增稠和凝胶作用,都要求使淀粉糊化。淀粉糊化时,其黏性和凝胶性质因淀粉品种不同而不同。这主要是由于不同品种淀粉所含的直链淀粉和支链淀粉比例不同,另外淀粉粒大小和聚合度不同也有一定的影响。普通玉米、小麦、马铃薯淀粉中直链支链淀粉比分别为2377、2476和2278,大米淀粉中该比值为1783,蜡质玉米和糯米淀粉中很少或几乎不含直链淀粉,而绿豆和豌豆淀粉中很少含支链淀粉。这种不同造成了它们具有不同的食用功能。淀粉粒在水中加热所发生的变化叫糊化。常

6、温下,淀粉悬液中的淀粉粒无明显变化;随着加热到6070,水分子可穿透淀粉粒中的无定形区;继续升温则结晶区的氢键被打断,整个淀粉粒会更加疏松膨胀。使全部淀粉粒发生膨胀,双折射现象从开始失去到完全失去的温度范围叫糊化温度范围(见表1-3)。在糊化中除淀粉膨胀外,直链淀粉还会从膨胀的淀粉粒中向外淋滤,当直链淀粉扩散到水中后就形成胶体溶液,而未破坏的淀粉粒悬浮于其中。当温度更高时,淀粉粒便破裂成一系列片段。表2-1 不同粮食淀粉的糊化温度范围粮食双折射现象失去的温度开始中点终点玉米626670小麦59.562.564马铃薯586266大米6874.578蜡质玉米636872绿豆、豌豆576570高直链

7、玉米6780高于100糊化后的淀粉液冷却时,直链淀粉间首先形成氢键而相互结合,当高度膨胀的淀粉粒与临近的直链淀粉间形成广泛的三维网状结构而形成凝胶,大量水固定在该网状结构中。凝胶形成后的前几个小时,凝胶强度不断加强,直至趋于稳定。仅仅含支链淀粉的淀粉粒溶液不能形成凝胶(尽管黏度可能不小),除非含量高达30以上。一般情况下,增加直链淀粉的比例,增稠作用(黏度引起)和凝胶强度都增加。淀粉的糊化、凝胶化和增稠性质极易受食品中多种其他成分影响。蔗糖会使黏度降低,能使糊化起始温度提高,还能使膨胀的淀粉更耐机械作用力,而不易被打碎。酸能使淀粉糊黏度降低,也能使淀粉凝胶强度降低。在酸热作用下,淀粉会水解为糊

8、精,既会导致淀粉粒过早片段化,又会导致进入溶液的直链淀粉部分水解。但不论是蔗糖还是酸都会使淀粉糊更加透明。三、实验材料与仪器(以一组实验计)1材料冰若干,白糖1l0g,柠檬汁1l0mL,玉米淀粉80g,小麦淀粉40g,马铃薯淀粉40g,大米淀粉40g,绿豆淀粉40g。2器材温度计1支,线扩散模具(或用切口整齐的粗玻璃管代替)2个,小玻板(10cml0cm)48块,300mL塑料开水杯16个,锅2个,肉串扦2个,碗16个,500mL刻度量筒2个。3基本配方玉米淀粉169,水236mL。四、实验步骤1基本操作称料、校正温度计后把淀粉与水加入锅中,搅匀后文火加热,在不断搅动下直至沸腾,记录沸点温度,

9、在沸腾下搅动保持lmin。将锅从火上移开,自然冷却至90时取20mL热溶胶液,加入线扩散模具(放于玻璃板上),然后提起模具让溶胶液自然向四周分散,直到停止扩散(或限定扩散时间为1min)。测量线扩散在东、南、西、北四个方向的扩散距离,其平均值即为线扩散值。完成线扩散测量后,将剩余溶胶液的一部分(定量,如150mL)倒入塑料杯中,用玻板盖住杯口,然后放入冰水碗中冷却,另一部分自然冷却。当温度达到30时,再取20mL作线扩散实验。冰水碗内的塑料杯可在凝胶形成后取出,尽量控制使冷却时问和最终温度在各次实验中相同。用肉串扦插入杯内的凝胶中,测量凝胶高度。然后将杯中凝胶块倒在玻璃板上,再次用肉串扦测量高

10、度,求出凝胶下陷百分比,下陷百分比()=(容器内高度一容器外高度)容器内高度1002改变淀粉种类用16g小麦淀粉代替玉米淀粉,然后按基本配方、基本操作完成。用16g马铃薯淀粉,其他同。用16g大米淀粉,其他同。用16g绿豆淀粉,其他同。3变化淀粉浓度用8g玉米淀粉(而不是16g玉米淀粉)、236mL水为配方,按基本操作完成。用8g小麦淀粉,其他同。用8g马铃薯淀粉,其他同。用8g大米淀粉,其他同。用8g绿豆淀粉,其他同。4添加蔗糖和柠檬汁在基本配方中增加25g蔗糖,其他操作不变。在基本配方中增加50g蔗糖,其他操作不变。在基本配方中用30mL柠檬汁取代相同量的水,其他操作不变。在基本配方中用6

11、0mL柠檬汁取代相同量的水,其他操作不变。5糊化温度研究将五种淀粉分别按基本配方的量配料后,依次进行一次下列实验。配料入锅,文火加热,不断搅动,随时监测温度。当温度到达70、80、90、95、沸腾温度时立即作线扩散实验。6感官评价本实验只目测所制凝胶块的透明度,以5分制评定结果。五、实验结果将上述实验结果记录于表2-2中。表2-2 实验结果记录编号配方糊化温度沸点线扩散值下陷感官(透明度)热冷六、注意事项淀粉糊化时需文火加热,并需不断搅动,且随时监测温度。参考文献刘静波主编.食品化学与工程专业实验指导.化学工业出版社,2010.09.实验三 蛋白质功能性质的测定(一) 蛋白质的溶解性一、实验目

12、的通过本实验了解蛋白质的溶解性及其影响因素。二、实验原理 蛋白质的溶解性是蛋白质的基本物理性质之一,一种蛋白质要有较好的功能性,它必须有较好的溶解性。影响蛋白质溶解性的因素有内部因素和外部因素。内部因素有氨基酸组成、分子结构、亲/疏水性和带电性等,外部因素有温度、pH值、离子强度和离子对种类、其他食品成分等。这些因素通过影响蛋白质-蛋白质和蛋白质-水相互作用平衡来影响蛋白质的溶解性。三、实验材料和仪器1. 试剂蛋清蛋白,分离大豆蛋白粉,1M盐酸,1M氢氧化钠,饱和氯化钠溶液,饱和硫酸铵溶液,硫酸铵。2. 器材水浴锅,50ml烧杯,试管,pH试纸。四、实验步骤1、在20ml的试管(编号A)中加入

13、0.5ml蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。取上述蛋白质的氯化钠溶液3ml,加入3ml饱和的硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。2、在四个试管(编号为B、C、D、E)中各加入0.2g大豆分离蛋白粉,分别加入5ml水,5ml饱和食盐水,5ml 1M的氢氧化钠溶液,5ml,1M的盐酸溶液,摇匀,在温水浴中温热片刻,观察大豆蛋白在不同溶液中的溶解度。在第一、第二支试管中加入饱和硫酸铵溶液3ml,

14、析出大豆球蛋白沉淀。第三、四支试管中分别用1M盐酸及1M氢氧化钠中和至pH4.5,观察沉淀的生成,解释大豆蛋白的溶解性以及pH值对大豆蛋白溶解性的影响。五、实验结果表1 蛋白质溶解性实验结果试管编号现象原因ABCDE(二) 蛋白质的乳化性一、 实验目的通过本实验了解蛋白质的乳化性质,以及乳化活性和乳化能力的测定方法。二、实验原理在食品乳化体系中,蛋白质能够降低油水界面的表面张力,从而阻止体系中油滴的聚集,提供体系的稳定性。常用乳化能力(emulsion capacity)、乳化活性指数(emulsifying activity index,EAI)和乳化稳定性指数(emulsifying st

15、ability index,ESI)来评价蛋白质的乳化性能。乳化能力是衡量在一定的条件下,一定量的蛋白质所能乳化的油的量。乳化活性指数的理论依据是蛋白质乳化液的浊度和乳化微粒的界面面积存在线性关系,涉及蛋白质在油-水界面的吸附、扩散和定向排列。乳化稳定性与时间和乳化液微粒直径(或颗粒度)有关,粒径越小稳定性越好。三、实验材料和仪器试剂:大豆分离蛋白粉,pH7.0磷酸盐缓冲液,大豆油,0.1%SDS(十二烷基硫酸钠)溶液。器材:高速匀浆机,分光光度计,烧杯四、实验步骤1、用pH 7.0磷酸盐缓冲液配制100mL、0.5%(m/v)的蛋白悬浮液。2、取30mL于高速匀浆机中,加入30mL大豆油,1

16、0000r/min均质1min以形成悬浊液。3、均质后,分别在0min与10min时从底部吸取100L分散于10mL的0.1%SDS(m/v)中,于500nm处测定吸光度值(测定三次平均值)。五、实验计算与结果以A0表示乳化活性(EAI),乳化稳定性(ESI)的表示方法为:ESI(min)= A0tA0A10式中:A0:0min时的吸光度值;t:测定乳化性 的两次时间间隔,本实验取10min;A10:10分钟时的吸光度值。(三) 蛋白质的起泡性和泡沫稳定性一、实验目的通过本实验了解蛋白质的起泡性质和泡沫稳定性,并掌握蛋白质的起泡性和泡沫稳定性的测定方法。二、实验原理起泡性,也叫发泡性,是指蛋白

17、产品搅打起泡的能力。蛋白的这一性质在食品工业中有重要的作用,如可用作蛋类代用品作发泡剂,改善烘焙食品的品质,使产品松软可口。评价蛋白质泡沫性质的方法有多种,评价指标也很多,如泡沫密度、泡沫强度、起泡平均直径和直径分布、蛋白质的发泡能力和泡沫的稳定性等。在食品工业的实际生产中,发泡能力和泡沫稳定性是应用最广的用来评价蛋白质发泡性的指标,它们的测定方法也有多种。蛋白质是一种表面活性剂,具有表面活性和成膜性,因此一定浓度的蛋白溶液在搅打过程中会进入空气,其溶液中会产生泡沫,而且由于蛋白质能在泡沫表面形成一定有一定强度和弹性的膜,因此蛋白质能在一定程度上使泡沫稳定。三、实验材料和仪器试剂: 2%蛋清蛋

18、白溶液:取2g蛋清加98g蒸馏水稀释,过滤取清液;氯化钠,酒石酸,分离大豆蛋白粉。器材:电动搅拌器,250ml烧杯,玻璃棒,玻璃管。四、实验步骤1、在三个250ml的烧杯(编号A、B、C)中各加入2%的蛋清蛋白溶液100ml,一份用电动搅拌器连续搅拌2分钟;一份用玻棒不断搅打2分钟;另一份用玻管不断鼓入空气泡2分钟,观察泡沫的生成,估计泡沫的多少及泡沫稳定时间的长短。评价不同的搅打方式对蛋白质起泡性的影响。计算起泡性和泡沫稳定性。2、取二个250ml的烧杯(编号D、E)各加入2%的蛋清蛋白溶液50ml,一份放入冷水中冷却至10,一份保持室温(20-25),同时以相同的方式搅打2分钟,观察泡沫产

19、生的数量及泡沫稳定性有何不同。3、取二个250ml烧杯(编号F、G)各加入2%蛋清蛋白溶液50ml,其中一份加入酒石酸0.5g,一份加入氯化钠0.1g,以相同的方式搅拌2分钟,观察泡沫产生的多少及泡沫稳定性有何不同。4、用2%的大豆蛋白溶液进行以上的同样实验,比较蛋清蛋白与大豆蛋白的起泡性。五、实验结果起泡性= 泡沫体积(ml)100%100(ml)静置20分钟后,再次测量泡沫体积,为泡沫稳定性。泡沫稳定性= 静置后泡沫体积(ml)100%100(ml)表2 蛋清蛋白实验结果烧杯编号起泡性泡沫稳定性电动搅拌器玻棒搅拌玻管鼓气电动搅拌器玻棒搅拌玻管鼓气ABCDEFG表3 大豆蛋白实验结果烧杯编号

20、起泡性泡沫稳定性电动搅拌器玻棒搅拌玻管鼓气电动搅拌器玻棒搅拌玻管鼓气ABCDEFG(四) 蛋白质的凝胶性一、实验目的通过本实验了解蛋白质的凝胶性。二、实验原理蛋白质凝胶化是指热或其他试剂使蛋白质从溶液或分散液转变成凝胶网络结构,在凝胶化过程中蛋白质分子相互作用形成一个三维网状结构。疏水作用力、静电作用力、氢键和二硫键都参与了凝胶化过程。蛋白质-蛋白质、蛋白质-溶剂(水)的相互作用和多肽链的柔性都影响蛋白质凝胶的性质。三、实验材料和仪器试剂:分离大豆蛋白粉,-葡萄糖酸内酯,氯化钙饱和溶液,明胶。器材:水浴锅,天平,试管,烧杯。四、实验步骤1、在试管(试管A)中取1ml蛋清蛋白,加1ml水和几滴饱

21、和食盐水至溶解澄清,放入沸水浴中,加热片刻观察凝胶的形成。2、在100ml烧杯中加入2g大豆分离蛋白粉,40ml水,在沸水浴中加热不断搅拌均匀,稍冷,将其分成二份(烧杯A和烧杯B),一份加入5滴饱和氯化钙,另一份加入0.2g -葡萄糖酸内酯,放置温水浴中数分钟,观察凝胶的生成。3、在试管(试管B)中加入0.5g明胶,5ml水,水浴中温热溶解形成粘稠溶液,冷后,观察凝胶的生成。解释在不同情况下凝胶形成的原因。五、实验结果表4 蛋白质凝胶性实验结果器材编号现象原因试管A试管B烧杯A烧杯B(五) 啤酒泡持性的测定一、实验目的通过本实验对啤酒的泡持性及泡持性测定方法有所了解。二、实验原理与其他饮料不同

22、,啤酒具有丰富的泡沫。好的泡沫表现为细腻、洁白、持久挂杯。因此,在感官上,我们通常把啤酒的泡沫性能作为衡量啤酒质量的一项重要指标。啤酒泡沫主要是由二氧化碳、起泡蛋白与异葎草酮等组成的复合体。在啤酒泡沫性能分析中,最重要的是啤酒的泡持性。三、实验材料和仪器材料:啤酒仪器: 秒表,泡持杯(杯内高120mm,内径60mm,壁厚2mm,无色透明玻璃),铁架台,铁环四、实验步骤1. 将酒样(整瓶或整听)置于(20士0.5)水浴中恒温30min;将泡持杯彻底清洗干净,备用。2. 将泡持杯置于铁架台底座上,距杯口3cm处固定铁环,开启瓶盖,立即置瓶(或听)口于铁环上,沿杯中心线,以均匀流速将酒样注人杯中,直

23、至泡沫高度与杯口相齐时为止(满杯时间宜控制在4s-8s内)。同时按秒表开始计时。3. 观察泡沫升起情况,记录泡沫的形态(包括色泽及细腻程度)和泡沫挂杯情况。4. 记录泡沫从满杯至消失(露出0.05cm2酒面)的时间。 注意:试验时严禁有空气流通,测定前样品瓶应避免振摇。所得结果表示至整数。在重复条件下获得的两次独立测定结果的绝对值不得超过算术平均值的10%。五、实验结果1. 记录实验操作中观察到现象。2. 观察泡沫升起情况,记录泡沫的形态(包括色泽及细腻程度)和泡沫挂杯情况。3. 记录泡沫从满杯至消失(露出0.05cm2酒面)的时间。实验四 食用油脂肪酸组成分析一实验目的掌握食用油脂肪酸组成的

24、分析原理与方法。二实验原理食用油中脂肪酸碳链长度较长,在分析其中的脂肪酸组成时,一般不直接进行气相色谱分析,其原因是油脂本身的沸点很高,如果如此高温下气化,油脂会发生分解或聚合反应;游离脂肪酸的沸点比较高,如果在高温下让游离脂肪酸气化,脂肪酸会发生裂解和聚合反应;这样都会使分析结果失真。通常是将油脂与甲醇反应转化成相应的脂肪酸甲酯,脂肪酸甲酯的沸点较相应的脂肪酸的沸点低得多,更容易气化,从而提高了脂肪酸的稳定性。三实验材料与仪器(1) 仪器50mL、100mL磨口圆底烧瓶滴管带磨口塞的试管,10mL,3支10mL移液管,2支沸石5mL或10mL移液管,1支(2) 试剂正己烷(色谱纯)甲醇,分析

25、纯无水硫酸钠,分析纯0.5M NaOH/甲醇溶液BF3/甲醇溶液,12-25%(质量比)饱和NaCl溶液无水硫酸钠,分析纯0.5M NaOH/甲醇溶液:11.5克钠溶于1000mL甲醇中。精炼食用油气相色谱仪(带火焰离子化检测器),1台氢气发生器,1台空气压缩机,1台高纯度氮气,1瓶(钢瓶)极性毛细管柱(如BPX-70, 30m0.25mm0.25m),1根色谱工作站,1套(包括电脑)1L进样针,1支(如有自动进样器可省去)四实验步骤(一) 甲酯化处理(1) 三氟化硼甲酯化本方法适用于不含特殊结构脂肪酸且脂肪酸碳原子数大于等于6的油脂、酸值大于等于2 mgKOH/kg的油脂或游离脂肪酸的甲酯化

26、。称取大约350mg油样放入50mL烧瓶中,移取6mL 0.5M NaOH/甲醇溶液于油样中,加入几粒沸石,连接回流装置,开始加热回流,回流过程中要不断摇动烧瓶。当烧瓶内的油珠消失,溶液变得透明时(大约需5-10分钟),用移液管从冷凝管上端加入7mL BF3/甲醇溶液于烧瓶中,继续回流1min。从冷凝器上端加入2-5mL正己烷,再回流1min。撤离火源,取出烧瓶,向烧瓶中加入一定量的NaCl饱和溶液,盖上塞子,轻轻上下颠倒几次,静置分层。用滴管将烧瓶内的上层液体取出,转移至磨口试管中,并加入适量无水硫酸钠以除去微量水分,得到甲酯化样品以备气相色谱分析用。(2) 简易碱法甲酯化本方法适用于酸值小

27、于2 mgKOH/kg的油脂。取大约20-30mg油样放入10mL带磨口塞的试管中,再向试管中加入3mL正己烷,轻摇使油样溶于正己烷中。向试管中加入1-2mL 0.5M NaOH/甲醇溶液,室温下摇动5min。向试管中加入少量无水硫酸钠,静置1h,于2000-3000rpm下离心2-3分钟,上层清夜即可用于气相色谱分析。(二) 气相色谱分析先开启辅助设备,而后开启主机,待主机完成自检后再开启色谱工作站。设置合适的工作条件,让色谱仪在此条件下空载运行30min以上。进样分析。分析结束后,对图谱进行定性和定量分析。五实验数据处理根据经验或标准样品进行定性处理;结合色谱工作站对色谱峰进行定量处理。六

28、注意事项BF3有毒,实验应在通风厨中进行;同时,用后的玻璃仪器应立即清洗。BF3/甲醇溶液一般现配现用,或者置于冰箱中储藏,否则会在气相色谱分析的图谱中产生怪峰,甚至造成多部饱和脂肪酸损失。实验五 蛋白酶活力的测定方法(一)可见光法测定蛋白酶活力一、实验目的掌握一种蛋白酶活力的测定原理和方法;学习一种酶活的计算方法。二、实验原理蛋白酶对酪蛋白、乳清蛋白、谷物蛋白等都有很好的水解作用。磷钨酸和磷钼酸混合试剂,即福林-酚试剂,碱性条件下极不稳定,易被酚类化合物还原而呈蓝色反应(钨兰和钨兰混合物)。由于蛋白质中含有具有酚基的氨基酸(酪氨酸、色氨酸、苯丙氨酸),因此,蛋白质及其水解产物也呈此反应。利用蛋白酶分解酪素(底物)生成含酚基氨基酸的呈色反应,来间接测定蛋白酶的活力。酶活单位的定义:在40(酸性pH=3.0、中性pH=7.5、碱性pH=10.5)条件下,1 min水解酪素产生1 g酪氨酸的酶活为一个酶活力单位,以u表示。三、实验材料和仪器1试剂(1)乳酸缓冲液(pH=3.0)适用于酸性蛋白酶 甲液:称取乳酸(80%-90%)10.6g,加水溶解并定容至1000 mL。乙液:称取乳酸钠(70%)16 g,加水溶解并定容至1000 mL.使用溶液:取甲液8 mL,加乙液1 m

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1