ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:93.66KB ,
资源ID:11513715      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11513715.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(版高中数学苏教版必修一学案342 函数模型及其应用.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

版高中数学苏教版必修一学案342 函数模型及其应用.docx

1、版高中数学苏教版必修一学案342 函数模型及其应用3.4.2函数模型及其应用学习目标1.理解函数模型的概念和作用.2.能用函数模型解决简单的实际问题.3.了解建立拟合函数模型的思想和步骤,并了解检验和调整的必要性知识点一函数模型思考自由落体速度公式vgt是一种函数模型类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?梳理设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型知识点二用函数模型解决实际问题(1)解答应用问题的基本思想(2)解答应用

2、问题的程序概括为“四步八字”,即审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;求模:求解数学模型,得出数学结论;还原:将数学结论还原为实际应用问题的结论知识点三数据拟合思考1我们知道不同的身高需要坐不同高度的桌椅,但你知道任一确定的身高对应的桌椅的最佳高度吗?如何解决?梳理现实世界中的事物都是相互联系、相互影响的,反映事物变化的变量之间就存在着一定的关系这些关系的发现,通常是通过试验或实验测定得到一批数据,再经过分析处理得到的数据拟合就是研究变量之间这种关系,并给出近似的数学表达式的一种方

3、法,根据拟合模型,我们还可以对某变量进行预测或控制此类题的解题过程一般有如下五步:(1)作图:即根据已知数据,画出散点图;(2)选择函数模型:一般是根据散点图的特征,联想哪些函数具有类似图象特征,找几个比较接近的函数模型尝试;(3)求出函数模型:求出(2)中找到的几个函数模型的解析式;(4)检验:将(3)中求出几个函数模型进行比较、验证,得出最合适的函数模型;(5)利用所求出的函数模型解决问题思考2数据拟合时,得到的函数为什么要检验?类型一利用已知函数模型求解实际问题例1某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出13 km后,以120 km/h的速度匀速行驶试写出

4、火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2 h内行驶的路程反思与感悟在实际问题中,有很多问题的两变量之间的关系是已知函数模型,这时可借助待定系数法求出函数解析式再根据解题需要研究函数性质跟踪训练1如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米则水位下降1米后,水面宽_米类型二自建确定性函数模型解决实际问题命题角度1非分段函数模型例2某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y48x8 000,已知此生产线年产量最大为210吨若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以

5、获得最大利润?最大利润是多少?反思与感悟自建模型时主要抓住四个关键:“求什么,设什么,列什么,限制什么”求什么就是弄清楚要解决什么问题,完成什么任务设什么就是弄清楚这个问题有哪些因素,谁是核心因素,通常设核心因素为自变量列什么就是把问题已知条件用所设变量表示出来,可以是方程、函数、不等式等限制什么主要是指自变量所应满足的限制条件,在实际问题中,除了要使函数式有意义外,还要考虑变量的实际含义,如人不能是半个等跟踪训练2有甲、乙两种商品,经营销售这两种商品所获得的利润依次为Q1万元和Q2万元,它们与投入的资金x万元的关系是Q1x,Q2.现有3万元资金投入使用,则对甲、乙两种商品如何投资才能获得最大

6、利润?命题角度2分段函数模型例3某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x元只取整数,用y表示出租所有自行车的日净收入(日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得)(1)求函数yf(x)的解析式;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?反思与感悟自变量x按取值不同,依不同的对应关系对应应变量y是分段函数的典例特征,建立

7、分段函数模型时应注意:(1)分段函数的“段”一定要分得合理,不重不漏(2)分段函数的定义域为对应每一段自变量取值范围的并集(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论跟踪训练3学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40 min的一节课中,注意力指数y与听课时间x(单位:min)之间的关系满足如图所示的图象当x(0,12时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x12,40时,图象是线段BC,其中C(40,50)根据专家研究,当注意力指数大于62时,学习效果最佳(1)试求yf(x)的函数关系式;(2)教师在

8、什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由1从2013年起,在20年内某海滨城市力争使全市工农业生产总产值翻两番,如果每年的增长率是8%,则达到翻两番目标的最少年数为_2某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是_(填序号)yaxb; yax2bxc;yaexb; yaln xb.3若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是_4某种植物生长发育的数量y与时间x的关系如下表:x123y138则下面的函数关系式中,拟合效果最好的是_y2x1; yx21;y2x1; y1.5x

9、22.5x2.5一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠”乙旅行社说:“家庭旅行为集体票,按原价的优惠”这两家旅行社的原价是一样的试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠1几类常见的函数模型:函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数型函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数型函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1

10、)幂函数型模型f(x)axnb(a,b为常数,a0)2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题答案精析问题导学知识点一思考函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函数模型函数模型通常用来解释已有数据和预测知识点三思考1我们知道桌椅高度与身

11、高有关系,但我们不知道具体的对应关系是什么这需要调查获得大量的数据,再从数据中找出规律或近似的规律思考2因为限于我们的认识水平和一些未知因素的影响,现实可能与我们所估计的函数有误差或甚至不切合客观实际,此时就要检验,调整模型或改选其他函数模型题型探究例1解因为火车匀速运动的时间为(27713)120 (h),所以0t.因为火车匀速行驶t h所行驶的路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是S13120t(0t).2 h内火车行驶的路程S13120(2)233(km)跟踪训练12解析以拱顶为原点,过原点与水面平行的直线为x轴,建立平面直角坐标系(如图),则水面和拱桥交点A

12、(2,2),设抛物线所对应的函数关系式为yax2(a0),则2a22,a,yx2.当水面下降1米时,水面和拱桥的交点记作B(b,3),将B点的坐标代入yx2,得b,因此水面宽2 米例2解设可获得总利润为R(x)万元,则R(x)40xy40x48x8 00088x8 000(x220)21 680 (0x210)R(x)在0,210上是单调增函数,当x210时,R(x)max(210220)21 6801 660.当年产量为210吨时,可获得最大利润1 660万元跟踪训练2解设对甲种商品投资x万元,则对乙种商品投资(3x)万元,总利润为y万元所以Q1x,Q2.所以yx (0x3),令t(0t),

13、则x3t2.所以y(3t2)t(t)2.当t时,ymax1.05(万元),即x0.75(万元),所以3x2.25(万元)由此可知,为获得最大利润,对甲、乙两种商品的资金投入分别为0.75万元和2.25万元,共获得利润1.05万元例3解(1)当x6时,y50x115,令50x1150,解得x2.3.又因为xN,所以3x6,且xN.当6x20,且xN时,y503(x6)x1153x268x115,综上可知yf(x)(2)当3x6,且xN时,因为y50x115是单调增函数,所以当x6时,ymax185.当6x20,且xN时,y3x268x11532,所以当x11时,ymax270.综上所述,当每辆自

14、行车日租金定为11元时才能使日净收入最多,为270元跟踪训练3解(1)当x(0,12时,设f(x)a(x10)280(a0)因为该部分图象过点B(12,78),将B点的坐标代入上式,得a,所以f(x)(x10)280.当x12,40时,设f(x)kxb(k0)因为线段BC过点B(12,78),C(40,50),将它们的坐标分别代入上式,得方程组解得所以f(x)x90.故所求函数的关系式为f(x)(2)由题意,得或解得4x12或12x28,即4x28.故老师应在x(4,28)时段内安排核心内容,能使得学生学习效果最佳当堂训练1192.3.y0.957 64.5解设家庭中孩子数为x(x1,xN*),旅游收费为y,旅游原价为a.甲旅行社收费:ya(x1)(x3);乙旅行社收费:y(x2)(x2)(x3)(x1),当x1时,两家旅行社收费相等当x1时,甲旅行社更优惠

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1