1、空间重构类图形推理不看后悔【分享】xx折叠专题一一. 判断给定的平面图形是否属正方体表面展开图1最长的一行(或列)在中间,可为2、3、4个,超过4个或长行不在中间的不是正方体表面展开图2在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是3规律:1 每一个顶点至多有3个邻面,不会有4个或更多个2 “一”形排列的三个面中,两端的面一定是对面,字母相同3 “L”形排列的三个面中,没有相同的字母,即没有对面,只有邻面二. 快速确定正方体的“对面” 口诀是:相间、“Z”端是对面 如下图,我们先来统一以下认识: 把含有图(1)所示或可由其作旋转后的图形统称为“I”型图;把所给平面图xx含
2、有(2)、(3)、(4)所示或可由其作旋转后的图形统称为“Z ”型图。 结论: 如果给定的平面图形能折叠成一个正方体,那么在这个平面图形xx所含的“I”型图或“Z”型图两端的正方形(阴影部分)必为折成正方体后的对面。 应用上面的结论,我们可以迅速地确定出正方体的“对面”。 例1如图,一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体xx,和“超”相对的字是 分析:自信沉着超,构成了竖着的Z字型,所以“自”与“超”对应,故应填“自” 三. 间二、拐角邻面知 xx间隔着两个小正方形或拐角型 的三个面是正方体的邻面 例2.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正
3、方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( ) 分析:我们把画有圆的一面记为a面,正方形阴影面记为b面,三角形阴影面记为c面 在选项Axx,由Z字型结构知b与c对面,与已知正方体bc相邻不符,应排除;在选项Bxx,b面与c面隔着a面,b面与c面是对面,也应排除;在选项Dxx,虽然a、b、c三面成拐角型,是正方体的三个邻面,b面作为上面,a面为正面,则c面应在正方体的左面,与原图不符,应排除,故应选(C)四. 正方体展开图: 相对的两个面涂上相同颜色五. 找正方体相邻或相对的面1从展开图找(1)正方体xx相邻的面,在展开图xx有公共边或公共顶点如,或在正方形长链xx相隔
4、两个正方形如xxA与D(2)在正方体xx相对的面,在展开图xx同行(或列)xx,xx间隔一个正方形如ABCDxx,A与C,B与D,或和xx间一行(或列)均相连的两正方形亦相对例1 右图中哪两个字所在的正方形,在正方体中是相对的面解 “祝”与“似”,“你”和“程”,“前”和“xx”相对例2 在A、B、C内分别填上适当的数使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C的三数依次是:(A),1(B),1(C)1, (D),1,分析 A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A)例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反
5、数 分析 A与0,B与2,C和-1都分处正方形链两侧且与其相连,A0,B-2,C1例4 找出折成正方体后相对的面解 A和C,D和F,B和E是相对的面2从xx找例5 正方体有三种不同放置方式,问下底面各是几?分析 先找相邻的面,余下就是相对的面上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对再看6,和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,下底面依次是2、5、1例6 由下图找出三组相对的面分析 和2相连的是1、3、5、6,相对的是4,和3相连的是2、4、5、6,相对的是1,和6相连的是1、2、3、4,相对的是5五. 由带标志的正方体图去
6、判断是否属于它的展开图例7 如下图,正方体三个侧面分别画有不同图案,它的展开图可以是( )分析 基本方法是先看上下,后定左右,图A图B都是和+两个面相对,不合题意,图C“”和“”之上,从xx看“”在右,符合要求图D“”和“”之上,“”在右,而xx“”应在左,不合要求,故选(C)例8 下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是( )分析 首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是和,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4)【分享】xx折叠专题二专题一的知识主要是介绍了如何寻找各种正方体及其展开
7、图的对面。专题二的内容将是具体的解题方法的介绍。在这里,我不推荐用剪纸折叠的方法去做,因为不适合在考场使用;而橡皮擦也只适用部分题目。首先要说明的是:数字在正式命题中一般不考虑方向性,此专题的数字考虑方向性,主要是因为阴影部分的绘图不是很方便,采用数字便与绘图和理解。首先介绍几个知识点: 不相对则相邻。结论1: 一个正方体有六个面,每个面都只有一个对面,因此,不是它的对面,那么就是邻面。找对面的方法已经在xx折叠专题(一)详细诠释。比如:和1相对的面是3,那么其它的面全是1的邻面。和6相对的面是4,那么其它的面全是6的邻面。结论2:任意3个面,两两之间无对面,则它们可以xx正方体。比如:(1、
8、4、5) ,(2、3、6) 可以xx正方体相反的:(1、4、6)不可以xx正方体,因为4和6是对面。 三个固定的图形的面,旋转摆放后,只有三种视图。视图二视图一视图三下面详细演示视图一是如何变化成视图二的: ABC所在平面均顺时针移动。 平面位置移动之后,平面内的字母顺时针旋转90。视图一到视图三原理相同,不同的是全部逆时针转动。重要结论:如果展开图能够折叠成以上的xx,则只交换两个面的位置,xx不成立。例如: 从平面到例题的基础模型。提出基础模型,是因为这个模型是人人都能掌握的。图1为了做题方便,统一将图形变换为图1模式思考,这样可以避免视觉差异。要注意的是:下图是不能折叠成以上正方体的,如
9、果A是我们看到的正面,那么B面我们是看不到的,这是一个视觉差异。 平面图的翻转等效方法。我们需要验证的是:1 、图2能否折叠成图3?图2图3解析:题目只要我们判断1,5,6面的情况,因此其他平面略去不考虑。5,6两个面连在一起,因此,我们只需考虑将1面翻转到和5,6面相连。翻转的过程,就是然1面沿着2,3,5面的上边线翻滚过去,每翻滚1次旋转90。本题的1翻滚到5的右边,共记4次,360,故1的方向不变。将1翻滚到6的右边,化为标准形式。 图52 、图2能否折叠成图4?图4解析:有了上题的结论,此题就比较简单了。根据图5和知识点的三种视图旋转方法,正确的正方体应该是下图结束语:解题方法介绍完毕
10、。以上的详细步骤,主要是写的思维的具体过程,熟练以后,是可以省略很多步骤直接得出结论的。从历年国考、省考真题来看,大部分的题目可以用知识点1:对面原则排除解题。但是如果再考查立体思维,不排除题目难度加大的可能,所以需要系统掌握此知识点。无论题目难度多大,立体思维的题目都将成为几秒钟就可以解决的送分题。正方体折叠的展开图等价刚看到的一道题:选出不能折成的一项是:本题应该选择A ,因为命题人考虑了数字的方向。那么如何不通过空间构想快速判断呢?原图可以直接将 1 的正方形向左翻叠90,等效于以下图形将3翻转到5的右边,为什么3的位置不发生变化呢?理由是3实质经过了4*90=360的翻转,这个以后详细解释。大家一定要掌握第步的等效方法,可以大大提高解题速度。相信第步大家是很容易理解的。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1