ImageVerifierCode 换一换
格式:DOCX , 页数:53 ,大小:479.29KB ,
资源ID:11073225      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11073225.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(伺服控制系统 概述.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

伺服控制系统 概述.docx

1、伺服控制系统 概述伺服控制系统- 概述第六章 伺服控制系统 第一节 概 述 伺服控制系统是一种能够跟踪输入的指令信号进行动作,从而获得精确的位置、速度及动力输出的自动控制系统。如防空雷达控制就是一个典型的伺服控制过程,它是以空中的目标为输入指令要求,雷达天线要一直跟踪目标,为地面炮台提供目标方位;加工中心的机械制造过程也是伺服控制过程,位移传感器不断地将刀具进给的位移传送给计算机,通过与加工位置目标比较,计算机输出继续加工或停止加工的控制信号。绝大部分机电一体化系统都具有伺服功能,机电一体化系统中的伺服控制是为执行机构按设计要求实现运动而提供控制和动力的重要环节。 一、伺服系统的结构组成 机电

2、一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。如图6-1给出了系统组成原理框图。 1、比较环节 是将输入的指令信号与系 统的反馈信号进行比较,以获得输出与输入间 的偏差信号的环节,通常由专门的电路或计算 机来实现。 2、控制器 通常是计算机或PID控制电 图6-1伺服系统组成原理框图 路,主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。 3、执行元件 作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。机电一体化系统中的执行元件一般指各种电机或液

3、压、气动伺服机构等。 4、被控对象 是指被控制的机构或装置,是直接完成系统目的的主体。一般包括传动系统、执行装置和负载。 5、检测环节 是指能够对输出进行测量,并转换成比较环节所需要的量纲的装置。一般包括传感器和转换电路。 在实际的伺服控制系统中,上述的每个环节在硬件特征上并不独立,可能几个环节在一个硬件中,如测速直流电机即是执行元件又是检测元件。 二、伺服系统的分类 伺服系统的分类方法很多,常见的分类方法有: 1、按被控量参数特性分类 按被控量不同,机电一体化系统可分为位移、速度、力矩等各种伺服系统。其它系统还有温度、湿度、磁场、光等各种参数的伺服系统 2、按驱动元件的类型分类 按驱动元件的

4、不同可分为电气伺服系统、液压伺服系统、气动伺服系统。电气伺服系统根据电机类型的不同又可分为直流伺服系统、交流伺服系统和步进电机控制伺服系统。 3、按控制原理分类 按自动控制原理,伺服系统又可分为开环控制伺服系统、闭环控制伺服系统和半闭环控制伺服系统。 开环控制伺服系统结构简单、成本低廉、易于维护,但由于没有检测环节,系统精度低、抗干扰能力差。闭环控制伺服系统能及时对输出进行检测,并根据输出与输入的偏差,实时调整执行过程,因此系统精度高,但成本也大幅提高。半闭环控制伺服系统的检测反馈环节位于执行机1 构的中间输出上,因此一定程度上提高了系统的性能。如位移控制伺服系统中,为了提高系统的动态性能,增

5、设的电机速度检测和控制就属于半闭环控制环节。 三、伺服系统的技术要求 机电一体化伺服系统要求具有精度高、响应速度快、稳定性好、负载能力强和工作频率范围大等基本要求,同时还要求体积小、重量轻、可靠性高和成本低等。 1、系统精度 伺服系统精度指的是输出量复现输入信号要求的精确程度,以误差的形式表现,即动态误差、稳态误差和静态误差。稳定的伺服系统对输入变化是以一种振荡衰减的形式反映出来,振荡的幅度和过程产生了系统的动态误差;当系统振荡衰减到一定程度以后,我们称其为稳态,此时的系统误差就是稳态误差;由设备自身零件精度和装配精度所决定的误差通常指静态误差。 2、稳定性 伺服系统的稳定性是指当作用在系统上

6、的干扰消失以后,系统能够恢复到原来稳定状态的能力;或者当给系统一个新的输入指令后,系统达到新的稳定运行状态的能力。如果系统能够进入稳定状态,且过程时间短,则系统稳定性好;否则,若系统振荡越来越强烈,或系统进入等幅振荡状态,则属于不稳定系统。机电一体化伺服系统通常要求较高的稳定性。 3、响应特性 响应特性指的是输出量跟随输入指令变化的反应速度,决定了系统的工作效率。响应速度与许多因素有关,如计算机的运行速度、运动系统的阻尼、质量等。 4、工作频率 工作频率通常是指系统允许输入信号的频率范围。当工作频率信号输入时,系统能够按技术要求正常工作;而其它频率信号输入时,系统不能正常工作。在机电一体化系统

7、中,工作频率一般指的是执行机构的运行速度。 上述的四项特性是相互关联的,是系统动态特性的表现特征。利用自动控制理论来研究、分析所设计系统的频率特性,就可以确定系统的各项动态指标。系统设计时,在满足系统工作要求(包括工作频率)的前提下,首先要保证系统的稳定性和精度,并尽量提高系统的响应速度。 第二节 执行元件 一、执行元件的分类及其特点 执行元件是能量变换元件,目的是控制机械执行机构运动。机电一体化伺服系统要求执行元件具有转动惯量小、输出动力大、便于控制、可靠性高和安装维护简便等特点。根据使用能量的不同,可以将执行元件分为电气式、液压式和气动式等几种类型。如图6-2所示。 1、电气式执行元件是将

8、电能转化成电磁力,并用电磁力驱动执行机构运动。如交流电机、直流电机力矩电机、步进电机等。对控制用电机性能除要求稳速运转之外,还要求加速、减速性能和伺服性能,以及频繁使用时的适应性和便于维护性。 电气执行元件的特点是操作简便、便于控制、能实现定位伺服、响应快、体积小、动力较大和无污染等优点,但过载能力差、易于烧毁线圈、容易受噪声干扰。 2、液压式执行元件是先将电能变化成液体压力,并用电磁阀控制压力油的流向,从而使液压执行元件驱动执行机构运动。液压式执行元件有直线式油缸、回转式油缸、液压马达等。 液压执行元件的特点是输出功率大、速度快、动作平稳、可实现定位伺服、响应特性好和过载能力强。缺点是体积庞

9、大、介质要求高、易泄露和环境污染。 3、气压式执行元件与液压式执行元件的原理相同,只是介质由液体改为气体。气压式执行2 元件的特点是介质来源方便、成本低、速度快、无环境污染,但功率较小、动作不平稳、有噪声、难于伺服。 图6-2执行元件的种类 在闭环或半闭环控制的伺服系统中,主要采用直流伺服电动机、交流伺服电动机或伺服阀控制的液压伺服马达作为执行元件。液压伺服马达主要用在负载较大的大型伺服系统中,在中、小型伺服系统中,则多数采用直流或交流伺服电动机。由于直流伺服电动机具有优良的静、动态特性,并且易于控制,因而在20世纪90年代以前,一直是闭环系统中执行元件的主流。近年来,由于交流伺服技术的发展,

10、使交流伺服电动机可以获得与直流伺服电动机相近的优良性能,而且交流伺服电动机无电刷磨损问题,维修方便,随着价格的逐年降低,正在得到越来越广泛的应用,因而目前已形成了与直流伺服电动机共同竞争市场的局面。在闭环伺服系统设计时,应根据设计者对技术的掌握程度及市场供应、价格等情况,适当选取合适的执行元件。 二、直流伺服电动机 直流伺服电机具有良好的调速特性,较大的启动转矩和相对功率,易于控制及响应快等优点。尽管其结构复杂,成本较高,在机电一体化控制系统中还是具有较广泛的应用。 1、直流伺服电动机的分类 直流伺服电动机按励磁方式可分为电磁式和永磁式两种。电磁式的磁场由励磁绕组产生;永磁式的磁场由永磁体产生

11、。电磁式直流伺服电动机是一种普遍使用的伺服电动机,特别是大功率电机(100W以上)。永磁式伺服电动机具有体积小、转矩大、力矩和电流成正比、伺服性能好、响应快功率体积比大、功率重量比大、稳定性好等优点。由于功率的限制,目前主要应用在办公自动化、家用电气、仪器仪表等领域。 直流伺服电动机按电枢的结构与形状又可分为平滑电枢型、空心电枢型和有槽电枢型等。平滑电枢型的电枢无槽,其绕组用环氧树脂粘固在电枢铁心上,因而转子形状细长,转动惯量小。空心电枢型的电枢无铁心,且常做成杯形,其转子转动惯量最小。有槽电枢型的电枢与普通直流3 电动机的电枢相同,因而转子转动惯量较大。 直流伺服电动机还可按转子转动惯量的大

12、小而分成大惯量、中惯量和小惯量直流伺服电动机。大惯量直流伺服电动机(又称直流力矩伺服电动机)负载能力强,易于与机械系统匹配,而小惯量直流伺服电动机的加减速能力强、响应速度快、动态特性好 2、直流伺服电动机的基本结构及工作原理 直流伺服电动机主要由磁极、电枢、电刷及换向片结构组成(如图6-3所示)。其中磁极在工作中固定不动,故又称定子。定子磁极用于产生磁场。在永磁式直流伺服电动机中,磁极采用永磁材料制成,充磁后即可产生恒定磁场。在他励式直流伺服电动机中,磁极由冲压硅钢片叠成,外绕线圈,靠外加励磁电流才能产生磁场。电枢是直流伺服电动机中的转动部分,故又称转子,它由硅钢片叠成,表面嵌有线圈,通过电刷

13、和换向片与外加电枢电源相连。 图 6-3 直流伺服电动机基本结构 图6-4 电枢等效电路 直流伺服电动机是在定子磁场的作用下,使通有直流电的电枢(转子)受到电磁转矩的驱使,带动负载旋转。通过控制电枢绕组中电流的方向和大小,就可以控制直流伺服电动机的旋转方向和速度。当电枢绕组中电流为零时,伺服电动机则静止不动。 直流伺服电动机的控制方式主要有两种:一种是电枢电压控制,即在定子磁场不变的情况下,通过控制施加在电枢绕组两端的电压信号来控制电动机的转速和输出转矩;另一种是励磁磁场控制,即通过改变励磁电流的大小来改变定子磁场强度,从而控制电动机的转速和输出转矩。 采用电枢电压控制方式时,由于定子磁场保持

14、不变,其电枢电流可以达到额定值,相应的输出转矩也可以达到额定值,因而这种方式又被称为恒转矩调速方式。而采用励磁磁场控制方式时,由于电动机在额定运行条件下磁场已接近饱和,因而只能通过减弱磁场的方法来改变电动机的转速。由于电枢电流不允许超过额定值,因而随着磁场的减弱,电动机转速增加,但输出转矩下降,输出功率保持不变,所以这种方式又被称为恒功率调速方式。 3、直流伺服电动机的特性分析 直流伺服电动机采用电枢电压控制时的电枢等效电路如图6-4所示。 I当电动机处于稳态运行时,回路中的电流保持不变,则电枢回路中的电压平衡方程式为 aE,U,IR (6-1) aaaaEUIR式中,是电枢反电动势;是电枢电

15、压;是电枢电流;是电枢电阻。 aaaaE,转子在磁场中以角速度切割磁力线时,电枢反电动势与角速度之间存在如下关系: a4 E,C, (6-2) ae式中,C是电动势常数,仅与电动机结构有关;是定子磁场中每极气隙磁通量。 ,eU,IR,C,由(6-1)(6-2)得 (6-3) aaaeT此外,电枢电流切割磁场磁力线所产生的电磁转矩,可由下式表达 mT,C,I mmaTmI,则 (6-4) aC,mC式中,是转矩常数,仅与电动机结构有关。 m将(6-4)代入(6-3)并整理,可得到直流伺服电动机运行特性的一般表达式 URaa,T2 m (6-5) C,CC,eemT,由此可以得出空载(,0,转子惯

16、量忽略不计)和电机启动(,0)时的电机特性。 mUa,T(1)当,0时, (6-6) C,me,称为理想空载角速度。可见,角速度与电枢电压成正比。 C,mT,T,U,(2)当,0时, (6-7) mdaRaT称为启动瞬时转矩,其值也与电枢电压成正比。 dT,f(T),如果把角速度看作是电磁转矩的函数,即,则可得到直流伺服电动机的机mm械特性表达式 Ra,T2 (6-8) 0mCC,emUa,式中是常数, 。 0C,0e,f(U)U,如果把角速度看作是电枢电压的函数,即,则可得到直流伺服电动机的aa调节特性表达式 Ua,kT (6-9) m,Ce5 Rak,2式中是常数, 。 kCC,emTU根

17、据式(6-8)和式(6-9),给定不同的值和值,可分别绘出直流伺服电动机的机械特性曲ma线和调节特性曲线,如图6-5、6-6所示。 图 6-5 直流伺服电动机机械特性 图 6-6 直流伺服电动机调节特性 由图6-5可见,直流伺服电动机的机械特性是一组斜率相同的直线簇。每条机械特性和一种T,电枢电压相对应,与轴的交点是该电枢电压下的理想空载角速度,与轴的交点则是该电枢m电压下的启动转矩。 由图6-6可见,直流伺服电动机的调节特性也是一组斜率相同的直线簇。每条调节特性和一种电磁转矩相对应,与U轴的交点是启动时的电枢电压。 a从图中还可看出,调节特性的斜率为正,说明在一定负载下,电动机转速随电枢电压

18、的增加而增加;而机械特性的斜率为负,说明在电枢电压不变时,电动机转速随负载转矩增加而降低。 4、影响直流伺服电动机特性的因素 上述对直流伺服电动机特性的分析是在理想条件下进行的,实际上电动机的驱动电路、电动机内部的摩擦及负载的变动等因素都对直流伺服电动机的特性有着不容忽略的影响。 (1)驱动电路对机械特性的影响 直流伺服电动机是由驱动电路供电的,假设驱动电路内RU阻是,加在电枢绕组两端的控制电压是,则可画出如图6-7所示的电枢等效回路。在这个ic电枢等效回路中,电压平衡方程式为 ,E,U,IR,R (6-10) acaai于是在考虑了驱动电路的影响后,直流伺服电动机的机械特性表达式变成 R,R

19、ai,T2 (6-11) 0mCC,emR将式(6-11)与式(6-8)比较可以发现,由于驱动电路内阻的存在而使机械特性曲线变陡了,i如图6-8给出了驱动电路内阻影响下的机械特性图。 6 图 6-7 含驱动电路的电枢等效回路 图 6-8 驱动电路内阻对机械特性的影响 如果直流伺服电动机的机械特性较平缓,则当负载转矩变化时,相应的转速变化较小,这时称直流伺服电动机的机械特性较硬。反之,如果机械特性较陡,当负载转矩变化时,相应的转速变化就较大,则称其机械特性较软。显然,机械特性越硬,电动机的负载能力越强;机械特性越软,负载能力越低。毫无疑问,对直流伺服电动机应用来说,其机械特性越硬越好。由图6-8

20、可见,由于功放电路内阻的存在而使电动机的机械特性变软了,这种影响是不利的,因而在设计直流伺服电动机功放电路时,应设法减小其内阻。 (2)直流伺服电动机内部的摩擦对调节特性的影响 由图6-6可见,直流伺服电动机在理想空载时(即T=0),其调节特性曲线从原点开始。但m1实际上直流伺服电动机内部存在摩擦(如转子与轴承间摩擦等),直流伺服电动机在启动时需要克服一定的摩擦转矩,因而启动时电枢电压不可能为零,这个不为零的电压称为启动电压,用Ub表示,如图6-9所示。电动机摩擦转矩越大,所需的启动电压就越高。通常把从零到启动电压这一电压范围称死区,电压值处于该区内时,不能使直流伺服电动机转动。 (3)负载变

21、化对调节特性的影响 由式(6-5)知,在负载转矩不变的条件下,直流伺服电动机角速度与电枢电压成线性关系。但在实际伺服系统中,经常会遇到负载随转速变动的情况,如粘性摩擦阻力是随转速增加而增加的,数控机床切削加工过程中的切削力也是随进给速度变化而变化的。这时由于负载的变动将导致调节特性的非线性,如图6-9所示。可见由于负载变动的影响,当电枢 电压U增加时,直流a,伺服电动机角速度的 图6-9 摩擦及负载变动对调节特性的影响 变化率越来越小,这一点在变负载控制时应格 外注意。 5、直流伺服系统 由于伺服控制系统的速度和位移都有较高的精度要求,因此直流伺服电机通常以闭环或半闭环控制方式应用于伺服系统中

22、。 7 图 6-10 闭环伺服系统结构原理图 直流伺服系统的闭环控制是针对伺服系统的最后输出结果进行检测和修正的伺服控制方法,而半闭环控制是针对伺服系统的中间环节(如电机的输出速度或角位移等)进行监控和调节的控制方法。它们都是对系统输出进行实时检测和反馈,并根据偏差对系统实施控制。两者的区别仅在于传感器检测信号位置的不同,因而导致设计、制造的难易程度不同及工作性能的不同,但两者的设计与分析方法是基本上一致的。闭环和半闭环控制的位置伺服系统的结构原理分别如图6-10、6-11所示。 图 6-11 半闭环伺服系统结构原理图 设计闭环伺服系统必须首先保证系统的稳定性,然后在此基础上采取各种措施满足精

23、度及快速响应性等方面的要求。当系统精度要求很高时,应采用闭环控制方案。它将全部机械传动及执行机构都封闭在反馈控制环内,其误差都可以通过控制系统得到补偿,因而可达到很高的精度。但是闭环伺服系统结构复杂,设计难度大,成本高,尤其是机械系统的动态性能难于提高,系统稳定性难于保证。因而除非精度要求很高时,一般应采用半闭环控制方案。 影响伺服精度的主要因素是检测环节,常用的检测传感器有旋转变压器、感应同步器、码盘、光电脉冲编码器、光栅尺、磁尺及测速发电机等。如被测量为直线位移,则应选尺状的直线位移传感器,如光栅尺、磁尺、直线感应同步器等。如被测量为角位移,则应选圆形的角位移传感器,如光电脉冲编码器、圆感

24、应同步器、旋转变压器、码盘等。一般来讲,半闭环控制的伺服系统主要采用角位移传感器,闭环控制的伺服系统主要采用直线位移传感器。在位置伺服系统中,为了获得良好的性能,往往还要对执行元件的速度进行反馈控制,因而还要选用速度传感器。速度控制也常采用光电脉冲编码器,既测量电动机的角位移,又通过计时而获得速度。 在闭环控制的伺服系统中,机械传动与执行机构在结构形式上与开环控制的伺服系统基本一样,即由执行元件通过减速器和滚动丝杠螺母机构,驱动工作台运动。 8 直流伺服电动机的控制及驱动方法通常采用晶体管脉宽调制(PWM)控制和晶闸管(可控硅)放大器驱动控制。具体的控制方法在本章第三节介绍。 三、步进电动机

25、步进电动机又称电脉冲马达,是通过脉冲数量决定转角位移的一种伺服电动机。由于步进电动机成本较低,易于采用计算机控制,因而被广泛应用于开环控制的伺服系统中。步进电动机比直流电动机或交流电动机组成的开环控制系统精度高,适用于精度要求不太高的机电一体化伺服传动系统。目前,一般数控机械和普通机床的微机改造中大多数均采用开环步进电动机控制系统。 1、步进电动机的结构与工作原理 步进电动机按其工作原理分,主要有磁电式和反应式两大类,这里只介绍常用的反应式步进电动机的工作原理。三相反应式步进电动机的工作原理如图6-12所示,其中步进电动机的定子上有6个齿,其上分别缠有W、W、W三相绕组,构成三对磁极,转子上则

26、均匀分布着4个齿。ABC步进电动机采用直流电源供电。当W、W、W三相绕组轮流通电时,通过电磁力吸引步进电ABC动机转子一步一步地旋转。 图 6-12 步进电动机运动原理图 图 6-13 三相反应式步进电动机 首先假设U相绕组通电,则转子上下两齿被磁吸住,转子就停留在U相通电的位置上。然后U相断电,V相通电,则磁极U的磁场消失,磁极V产生了磁场,磁极V的磁场把离它最近的0另外两齿吸引过去,停止在V相通电的位置上,这时转子逆时针转了30。随后V相断电,W相0通电,根据同样的道理,转子又逆时针转了30,停止在W相通电的位置上。若再U相通电,W0相断电,那么转子再逆转30。定子各相轮流通电一次,转子转

27、一个齿。 步进电机绕组按依次轮流通电,步进电动机转子U,V,W,U,V,W,U就一步步地按逆时针方向旋转。反之,如果步进电动机按倒序依次使绕组通电,即:,则步进电动机将按顺时针方向旋转。 U,W,V,U,W,V,U步进电机绕组每次通断电使转子转过的角度称之为步距角。上述分析中的步进电机步距角为030。 对于一个真实的步进电动机,为了减少每通电一次的转角,在转子和定子上开有很多定分的小齿(其中定子的三相绕组铁心间有一定角度的齿差,当U相定子小齿与转子小齿对正时,V相和W相定子上的齿则处于错开状态,如图6-13所示。工作原理与上同,只是步距角是小齿距夹角的1/3。 2、步进电动机的通电方式 如果步

28、进电动机绕组的每一次通断电操作称为一拍,每拍中只有一相绕组通电,其余断电,9 这种通电方式称为单相通电方式。三相步进电动机的单相通电方式称为三相单三拍通电方式。如:。 A,B,C,A,?如果步进电动机通电循环的每拍中都有两相绕组通电,这种通电方式称为双相通电方式。三相步进电动机采用双相通电方式时(如:),称为三相双三拍通AB,BC,CA,AB,?电方式。 如果步进电动机通电循环的各拍中交替出现单、双相通电状态,这种通电方式称为单双相轮流通电方式。三相步进电动机采用单双相轮流通电方式时,每个通电循环中共有六拍,因而又称为三相六拍通电方式,即。 A,AB,B,BC,C,CA,A,?一般情况下,m相

29、步进电动机可采用单相通电、双相通电或单双相轮流通电方式工作,对应的通电方式可分别称为m相单m拍、m相双m拍或m相2m拍通电方式。 由于采用单相通电方式工作时,步进电动机的矩频特性(输出转矩与输入脉冲频率的关系)较差,在通电换相过程中,转子状态不稳定,容易失步,因而实际应用中较少采用。图6-14是某三相反应式步进电动机在不同通电方式下工作时的矩频特性曲线。显然,采用单双相轮流通电方式可使步进电动机在各种工作频率下都具有较大的负载能力。 图 6-14 不同通电方式时的矩频特性 图6-15 启动矩频特性 通电方式不仅影响步进电动机的矩频特性,对步距角也有影响。一个m相步进电动机,如其转子上有z个小齿

30、,则其步距角可通过下式计算: ,360, (6-12) kmz式中,k是通电方式系数,当采用单相或双相通电方式时,k,1,当采用单双相轮流通电方式时,k,2。可见采用单双相轮流通电方式还可使步距角减小半。步进电机的步距角决定了系统的最小位移,步距角越小,位移的控制精度越高。 3、步进电动机的使用特性 (1)步距误差 步距误差直接影响执行部件的定位精度。步进电动机单相通电时。步距误差取决于定子和转子的分齿精度和各相定子的错位角度的精度。多相通电时,步距角不仅与加工装配精度有关,还和各相电流的大小、磁路性能等因素有关。国产步进电动机的步距误差一般为,10,15,功率步进电动机的步距误差般为,20,

31、25。精度较高的步进电动机可达2,5。 ,(2)最大静转矩 是指步进电动机在某相始终通电而处于静止不动状态时,所能承受的最大外加转矩,亦即所能输出的最大电磁转矩,它反映了步进电动机的制动能力和低速步进运行时的负载能力。 (3)启动矩一频特性 空载时步进电动机由静止突然启动,并不失步地进入稳速运行所允许的最高频率称为最高启动频率。启动频率与负载转矩有关。图6-15给出了90BF002型步进电10 动机的启动矩频特性曲线。由图可见,负载转矩越大,所允许的最大启动频率越小。选用步进电动机时应使实际应用的启动频率与负载转矩所对应的启动工作点位于该曲线之下,才能保证步进电动机不失步地正常启动。当伺服系统要求步进电动机的运行频率高于最大允许启动频率时,可先按较低的频率启动,然后按一定规律逐渐加速到运行频率。 (4)运行矩频特性 步进电动机连续运行时所能接受的最高频率称为最高工作频率,它与步距角一起决定执行部件的最大运行速度。最高工作频率决定于负载惯量J,还与定子相数、通电方式、控制电路的功率驱动器等因素有关。图6-16是90BF002型步进电动机的运行矩频特性曲线。由图可见,步进电动机的输出转矩随运行频率的增加而减小,即高速时其负载能力变差, 图6-16 运行矩频特性 这一特性是步进电动机应用范围受到限制的主要原因 之一。选用步进电动机时,应使

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1