ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:174.52KB ,
资源ID:11061943      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/11061943.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(利用MATLAB实现QPSK调制及解调.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

利用MATLAB实现QPSK调制及解调.docx

1、利用MATLAB实现QPSK调制及解调利用MATLAB实现QPSK调制及解调郑州轻工业学院 题目:利用MATLAB实现QPSK调制及解调 姓 名: 院 系: 电气信息工程学院 专业班级: 电子信息工程09-1 学 号: 540901030154 指导教师: 赵红梅 成 绩: 时间: 2012 年 6 月 18 日至 2012 年 6 月 22 日 1 郑州轻工业学院 课 程 设 计 任 务 书 题目 利用MATLAB实现QPSK调制及解调 专业班级 电子信息工程09级 1班 学号 54 姓名 主要内容、基本要求、主要参考资料等: 主要内容: 已知数字信号1011000101101011,码元速

2、率为2400波特,载波频率为1200Hz,利用MATLAB画出QPSK调制波形,并画出调制信号经过高斯信道传输后解调波形及接收误码率,将其与理论值进行比较。 基本要求: 1、通过本课程设计,巩固通信原理QPSK调制的有关知识; 2、熟悉QPSK产生原理; 3、熟悉高斯信道的建模及QPSK解调原理; 4、熟悉误码率的蒙特卡罗仿真; 5、学会用MATLAB来进行通信系统仿真。 主要参考资料: 主要参考资料: 1、王秉钧等. 通信原理M.北京:清华大学出版社,2006.11 2、陈怀琛.数字信号处理教程-MATLAB释义与实现M.北京:电子工业出版社,2004. 完 成 期 限: 2012.6.18

3、2012.6.23 指导教师签名: 课程负责人签名: 2012年 6月 16日 2 一 前言 . 4 1.1QPSK系统的应用背景简介 . 4 1.2 QPSK实验仿真的意义 . 4 1.3 实验平台和实验内容 . 5 1.3.1实验平台 . 5 1.3.2实验内容 . 5 二、系统实现框图和分析 . 5 2.1、QPSK调制部分, . 5 2.2、QPSK解调部分 . 7 三、实验结果及分析 . 7 3.1、理想信道下的仿真 . 7 3.2、高斯信道下的仿真 . 8 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 . 9 参考文献: . 11 附录 . 12 3 基于MATLAB的QPSK仿

4、真设计与实现 一 前言 1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容, 复习Q

5、PSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能4 力,通过编程完成

6、QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿

7、真系统,要求仿真结果有 a.基带输入波形及其功率谱 QPSK信号及其功率谱 b.c.QPSK信号星座图 构建一个在AWGN(高斯白噪声)信道条件下的QPSK仿真系统,要求仿真2.结果有 a.QPSK信号及其功率谱 b.QPSK信号星座图 c.高斯白噪声信道条件下的误码性能以及高斯白噪声的理论曲线,要求所有误码性能曲线在同一坐标比例下绘制 3验可选做扩展内容要求: 构建一个先经过Rayleigh(瑞利衰落信道),再通过AWGN(高斯白噪声)信道条件下的条件下的QPSK仿真系统,要求仿真结果有 a.QPSK信号及其功率谱 b.通过瑞利衰落信道之前和之后的信号星座图,前后进行比较 c.在瑞利衰落信道

8、和在高斯白噪声条件下的误码性能曲线,并和二.2.c中所要求的误码性能曲线在同一坐标比例下绘制 二、系统实现框图和分析 2.1、QPSK调制部分, 原理框图如图1所示 2,1,t,ftc cos(2)T5 二进制 QPSK 极性NRZ 分离信号(st) 数据序列 ,电平编码器 器 2, 2,t, ,ftcsin(2)T图1 原理分析: 基本原理及系统结构 QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。的别的载波相位取四个等间隔值之一,如/4, 3/4,5/4,和7/4。相应的,可将发射信号定义为 2/cos2(21)/4Etfti,,, 0?t?T Si(t) , 0。, 其他

9、其中,i,1,2,2,4;E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。每一个可能的相位值对应于一个特定的二位组。例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。 下面介绍QPSK信号的产生和检测。如果a为典型的QPSK发射机框图。输入的二进制数据序列首先被不归零(NRZ)电平编码转换器转换为极性形式,即负EbEb号1和0分别用和,表示。接着,该二进制波形被分接器分成两个分别由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用a1(t),和a2(t)表示。容易注意到,在任何一信号时间间隔内a1(t),和

10、a2(t)的幅度恰好分别等于Si1和 Si2,即由发送的二位组决定。这两个二,进制波形a1(t),和a2(t)被用来调制一对正交载波或者说正交基本函数:122,(t),ftc,2(t),ftc。这样就得到一对二进制PSKcos(2)sin(2)TT,信号。1(t)和2(t)的正交性使这两个信号可以被独立地检测。最后,将6 这两个二进制PSK信号相加,从而得期望的QPSK。 2.2、QPSK解调部分 ,原理框图如图2所示: , 1,t, 同相信道 门限,0 低通filrer 判决门限 接收发送二进信 号 复接器 制序列的x(t) 估计 低通filrer 判决门限 , 2,t, 正交信道 门限,0

11、 图2 原理分析: QPSK接收机由一对共输入地相关器组成。这两个相关器分别提供本地产生地,相干参考信号1(t)和2(t)。相关器接收信号x(t),相关器输出地x1和x2被用来与门限值0进行比较。如果x10,则判决同相信道地输出为符号1;如果x1=-1 & t(i)=5& t(i)=0 & t1(i)=4& t1(i)0 data_recover_a(i:i+19)=1; bit_recover=bit_recover 1; else data_recover_a(i:i+19)=-1; bit_recover=bit_recover -1; end end 15 error=0; dd =

12、-2*bit_in+1; ddd=dd; ddd1=repmat(ddd,20,1); for i=1:2e4 ddd2(i)=ddd1(i); end for i=1:1e3 if bit_recover(i)=ddd(i) error=error+1; end end p=error/1000; figure(1) subplot(2,1,1);plot(t2,ddd2);axis(0 100 -2 2);title(原序列); subplot(2,1,2);plot(t2,data_recover_a);axis(0 100 -2 2);title(解调后序列); 效果图: 16 % 设

13、定 T=1, 不加噪声 clear all close all % 调制 bit_in = randint(1e3, 1, 0 1); bit_I = bit_in(1:2:1e3); bit_Q = bit_in(2:2:1e3); data_I = -2*bit_I+1; data_Q = -2*bit_Q+1; data_I1=repmat(data_I,20,1); data_Q1=repmat(data_Q,20,1); for i=1:1e4 data_I2(i)=data_I1(i); data_Q2(i)=data_Q1(i); end; t=0:0.1:1e3-0.1; f=

14、0:0.1:1; 17 xrc=0.5+0.5*cos(pi*f); data_I2_rc=conv(data_I2,xrc)/5.5; data_Q2_rc=conv(data_Q2,xrc)/5.5; f1=1; t1=0:0.1:1e3+0.9; I_rc=data_I2_rc.*cos(2*pi*f1*t1); Q_rc=data_Q2_rc.*sin(2*pi*f1*t1); QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc); % 解调 I_demo=QPSK_rc.*cos(2*pi*f1*t1); Q_demo=QPSK_rc.*sin(2*pi

15、*f1*t1); I_recover=conv(I_demo,xrc); Q_recover=conv(Q_demo,xrc); I=I_recover(11:10010); Q=Q_recover(11:10010); t2=0:0.05:1e3-0.05; t3=0:0.1:1e3-0.1; data_recover=; for i=1:20:10000 data_recover=data_recover I(i:1:i+19) Q(i:1:i+19); end; ddd = -2*bit_in+1; ddd1=repmat(ddd,10,1); for i=1:1e4 ddd2(i)=d

16、dd1(i); end figure(1) subplot(4,1,1);plot(t3,I);axis(0 20 -6 6); subplot(4,1,2);plot(t3,Q);axis(0 20 -6 6); subplot(4,1,3);plot(t2,data_recover);axis(0 20 -6 6); subplot(4,1,4);plot(t,ddd2);axis(0 20 -6 6); 效果图: 18 % QPSK误码率分析 SNRindB1=0:2:10; SNRindB2=0:0.1:10; for i=1:length(SNRindB1) pb,ps=cm_sm3

17、2(SNRindB1(i); smld_bit_err_prb(i)=pb; smld_symbol_err_prb(i)=ps; end; for i=1:length(SNRindB2) SNR=exp(SNRindB2(i)*log(10)/10); theo_err_prb(i)=Qfunct(sqrt(2*SNR); end; title(QPSK误码率分析); semilogy(SNRindB1,smld_bit_err_prb,*); axis(0 10 10e-8 1); hold on; % semilogy(SNRindB1,smld_symbol_err_prb,o);

18、semilogy(SNRindB2,theo_err_prb); legend(仿真比特误码率,理论比特误码率); hold off; 19 functiony=Qfunct(x) y=(1/2)*erfc(x/sqrt(2); functionpb,ps=cm_sm32(SNRindB) N=10000; E=1; SNR=10(SNRindB/10); sgma=sqrt(E/SNR)/2; s00=1 0; s01=0 1; s11=-1 0; s10=0 -1; for i=1:N dsource1(i)=1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1; numofsy

19、mbolerror=0; numofbiterror=0; for i=1:N n=sgma*randn(size(s00); if(dsource1(i)=0)&(dsource2(i)=0) r=s00+n; elseif(dsource1(i)=0)&(dsource2(i)=1) r=s01+n; elseif(dsource1(i)=1)&(dsource2(i)=0) r=s10+n; else r=s11+n; end; c00=dot(r,s00); c01=dot(r,s01); c10=dot(r,s10); c11=dot(r,s11); c_max=max(c00 c01 c10 c11); if (c00=c_max) decis1=0;decis2=0; elseif(c01=c_max) 20 decis1=0;decis2=1; elseif(c10=c_max) decis1=1;decis2=0; else decis1=1;decis2=1; end; symbolerror=0; if(decis1=dsource1(i) numofbiterror=numofbiterror+1; symbolerror=

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1