1、五年级奥数举一反三第10周数阵五年级奥数举一反三第10周数阵专题简析;填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。这里,和同学们讨论一些数阵的填法。解答数阵问题通常用两种方法;一是待定数法,二是试验法。待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。 例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都
2、是21。先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知;ABCDE=35,AEBCED=212=42。把两式相比较可知,E=4235=7,即中间填7。然后再根据59=68便可把五个数填进方格,如图b。练 习 一 1,把110各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。2,把19各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。3,将17七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。 例题2 将110这十个数填入下图小圆中,使每个大圆上六个数的和是30。分析 设中间两个圆中的数为a、b,则两个大圆的总和是12310ab=302,即5
3、5ab=60,ab=5。在110这十个数中14=5,23=5。当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。练习二 1,把18八个数分别填入下图的内,使每个大圆上五个内数的和相等。2,把110这十个数分别填入下图的内,使每个四边形顶点的内四个数的和都相等,且和最大。3,将18八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。例题3 将16这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。分析 设
4、中间三个圆内的数是a、b、c。因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知;123456(abc)除以3没有余数。123456=21,213=7没有余数,那么abc的和除以3也应该没有余数。在16六个数中,只有456的和最大,且除以3没有余数,因此a、b、c分别为4、5、6。(123456456)3=12,所以有下面的填法;练习三1,将16六个数分别填入下图的内,使每边上的三个内数的和相等。2,将19九个数分别填入下图内,使每边上四个内数的和都是17。3,将18八个数分别填入下图的内,使每条安上三个数的和相等。例题4 将17分别填入下图的7个内,使每条线段上三个内数的和相等。
5、 分析 首先要确定中心圆内的数,设中心内的数是a,那么,三条线段上的总和是12345672a=282a,由于三条线段上的和相等,所以(282a)除以3应该没有余数。由于283=91,那么2a除以3应该余2,因此,a可以为1、4或7。当a=1时,(2821)31=9,即每条线段上其他两数的和是9,因此,有这样的填法。练 习 四1,将19填入下图的中,使横、竖行五个数相加的和都等于25。2,将111这十一个数分别填进下图的里,使每条线上3个内的数的和相等。3,将18这八个数分别填入下图内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。例题5 如下图(a)四个小三角形的顶点处
6、有六个圆圈。如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等。问这六个质数的积是多少?分析 设每个小三角形三个顶点处内数的和为X。因为中间的小三角形顶点处的数在求和时都用了三次,所以,四个小三角形顶点处数的总和是4X=202X,解方程得X=10。由此可知,每个小三角形顶点处的三个质数的和是10,这三个质数只能是2、3、5。因此这6个质数的积是223355=900。如图(b)。练习五1,将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的积都相等。2,将19九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大。这五个数之和最大是多少?3,将19九个数分别填入下图内,使外三角形边上内数之和等于里面三角形边上内数之和。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1