ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:117.50KB ,
资源ID:1098488      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1098488.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(推荐系统学习笔记要点.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

推荐系统学习笔记要点.docx

1、推荐系统学习笔记要点推荐系统实践学习笔记1 好的推荐系统1.1 什么是推荐系统推荐系统和搜索引擎都是为了帮助用户从大量信息中找到自己感兴趣的信息。区别是搜索引擎由用户主动提供关键词来查找信息,推荐系统则不需要,而通过分析用户的历史行为给用户的兴趣建模,主动给用户推荐他们可能感兴趣的信息。从物品的角度出发,推荐系统可以更好地发掘物品的长尾。长尾商品往往代表了一小部分用户的个性化需求,发掘这类信息正是推荐系统的长项。1.2 个性化推荐系统的应用推荐系统广泛存在于各类网站中,作为一个应用为用户提供个性化推荐。它需要依赖用户的行为数据,因此一般都由后台日志系统、推荐算法系统和前台展示页面3部分构成。应

2、用推荐系统的领域包括:电子商务 - 亚马逊:基于物品、好友的个性化推荐,相关推荐,2030%电影视频 - Netflix:基于物品的推荐,60%;YouTube、Hulu音乐 - Pandora:专家标记;Last.fm:用户行为社交网络 - Facebook、Twitter阅读 - Google Reader基于位置的服务 - Foursquare个性化邮件 - Tapestry广告 - Facebook1.3 推荐系统评测主要有3种评测推荐效果的实验方法:离线实验:划分训练集和测试集,在训练集训练用户兴趣模型,在测试集预测优点:快速方便缺点:无法用真实的商业指标来衡量用户调查:用抽样的方法

3、找部分用户试验效果优点:指标比较真实缺点:规模受限,统计意义不够在线实验:AB测试优点:指标真实缺点:测试时间长,设计复杂实际中,这三种方法在推荐算法上线前都要完成。评测指标较多,一些重要的如下:用户满意度:调查问卷,线上的用户行为统计、其他的指标转化得到预测准确度:可通过离线实验计算评分预测,通过均方根误差和平均绝对误差计算,前者更为苛刻。设rui为用户u对物品i的实际评分,rui为预测评分RMSE=u,iT(ruirui)2|T| MAE=u,iT|ruirui|T|TopN推荐,通过准确率或召回率衡量。设R(u)为根据训练建立的模型在测试集上的推荐,T(u)为测试集上用户的选择Preci

4、sion=uU|R(u)T(u)|uU|R(u)|Recall=uU|R(u)T(u)|uU|T(u)|覆盖率:表示对物品长尾的发掘能力(推荐系统希望消除马太效应)Coverage=|uUR(u)|I|上面的公式无法区分不同的分布,可以用熵或基尼系数来更准确地表述覆盖率H=i=1np(i)logp(i)p(i)为物品i的流行度的比例。G=1n1j=1n(2jn1)p(j)p(j)为按流行度由小到大排序的物品列表中的第j个物品的流行度的比例。多样性:推荐需要满足用户的广泛的兴趣,表示推荐列表中物品两两之间的不相似性。设s(i,j)表示物品i和j之间的相似度Diversity(R(u)=1i,jR

5、(u),ijs(i,j)12|R(u)|(|R(u)|1)Diversity=1|U|uUDiversity(R(u)新颖性:指给用户推荐他们不知道的物品,可以用平均流行度做粗算,或者更精确地通过做用户调查。惊喜度:推荐和用户的历史兴趣不相似,却使用户满意的物品。信任度:只能通过问卷调查来评价,可以通过增加推荐系统的透明度和利用好友信息推荐来提高信任度。实时性:保持物品的时效性,主要涉及推荐系统实时更新和对新物品的处理。健壮性:开发健壮性高的算法,清理脏数据,使用代价较高的用户行为设计推荐系统。商业目标:推荐系统对于网站的价值。作者认为,离线实验的优化目标是在给定覆盖率、多样性、新颖性等限制条

6、件下,最大化预测准确度。对推荐系统还需要从多维度来评测,如用户维度、物品维度和时间维度,这样可以更全面地了解推荐系统的性能。2 利用用户行为数据2.1 用户行为用户行为数据一般从日志中获得,可以按反馈的明确性把用户行为分为显性反馈和隐性反馈。用户行为数据很多满足长尾分布(Zipf定律)f(x)=xk另外,用户活跃度高,倾向于看冷门的物品。基于用户行为分析的推荐算法一般称为协同过滤算法,包括基于邻域的方法、隐语义模型、基于图的随机游走算法等,应用最广的是基于邻域的方法。2.2 基于邻域的算法基于邻域的算法可以分为基于用户的协同过滤算法(UserCF)和基于物品的协同过滤算法(ItemCF)。2.

7、2.1 基于用户的协同过滤算法UserCF算法主要有两步:找到和目标用户兴趣相似的用户集合找到这个集合中的用户喜欢的,且目标用户没有听说过的物品,推荐给目标用户设N(u)为用户u有过正反馈的物品集合,N(v)为用户v有过正反馈的物品集合,u和v的兴趣相似度可以用Jaccard公式或余弦相似度计算wuv=|N(u)N(v)|N(u)N(v)|wuv=|N(u)N(v)|N(u)|N(v)|以余弦相似度为例:def calcUserSimilarity1(t): w = defaultdict(dict) # 相似度矩阵 for u in t: for v in t: if u != v: wuv

8、 = len(tu & tv) / math.sqrt(len(tu) * len(tv)可以利用稀疏矩阵的性质优化上面的算法:def calcUserSimilarity2(t): itemUsers = defaultdict(set) # 物品-用户倒排表 n = defaultdict(int) # 用户喜欢的物品数 w = defaultdict(dict) # 相似度矩阵 # 建立倒排表 for u, items in t.iteritems(): for i in items: itemUsersi.add(u) # 计算相似度 for i, users in itemUsers

9、.iteritems(): for u in users: nu += 1 for v in users: if u != v: wuv = wu.get(v, 0) + 1 for u in w: for v in wu: wuv /= math.sqrt(nu * nv) return w然后用上面的相似度矩阵来给用户推荐和他兴趣相似的用户喜欢的物品。用户u对物品i的兴趣程度可以估计为p(u,i)=vS(u,K)N(i)wuvrviS(u,K)为和用户u兴趣最接近的K个用户,N(i)为对物品i有正反馈的用户集合,wuv为用户u和用户v的兴趣相似度,rvi为用户v对物品i的兴趣。def re

10、commend(u, t, w, k): rank = defaultdict(float) # 推荐结果 su = sorted(wu.items(), key=itemgetter(1), reverse=True) for v, wuv in su:k: for i, rvi in tv.iteritems(): if i not in tu: # 排除已经有过反馈的物品 ranki += wuv * rvi return rank通过对不同K值下的测量发现:准确率和召回率并不和K成线性关系,通过多次测量可以选择合适的K值K越大,推荐的结果越热门,流行度增大K越大,推荐结果的覆盖率越低可

11、以调整计算用户兴趣相似度的公式来改进算法。注意到用户对冷门物品采取同样的行为更能说明他们的兴趣相似度,可以改用下式计算兴趣相似度wuv=iN(u)N(v)1log(1+|N(i)|)|N(u)|N(v)|上式用1log(1+|N(i)|)(IIF参数)减小了热门物品对用户兴趣相似度的影响。将calcUserSimilarity2第15行改为wuv = wu.get(v, 0) + 1 / math.log(1 + len(users)UserCF算法用的并不多。它的问题是运算复杂度大,并且难以解释推荐的结果。2.2.2 基于物品的协同过滤算法ItemCF算法是目前应用最多的算法。它也主要分为两

12、步:根据用户行为计算物品之间的相似度根据物品的相似度和用户的历史行为给用户生成推荐列表设N(i)为喜欢物品i的用户数,N(j)为喜欢物品j的用户数,i和j的相似度可以计算为wij=|N(i)N(j)|N(i)|N(j)|这里面包含的假设是每个用户的兴趣都局限在某几个方面。计算物品相似度使用和计算用户兴趣相似度类似的方法:def calcItemSimilarity(t): n = defaultdict(int) # 喜欢物品的用户数 w = defaultdict(dict) # 相似度矩阵 for u, items in t.iteritems(): for i in items: ni

13、+= 1 for j in items: if i != j: wij = wi.get(j, 0) + 1 for i in w: for j in wi: wij /= math.sqrt(ni * nj) return w然后计算用户u对物品i的兴趣程度p(u,i)=jS(i,K)N(u)wijrujS(i,K)为和物品i最相似的K个物品,N(u)为用户u喜欢的物品集合,wij为物品i和物品j的相似度,ruj为用户u对物品j的兴趣。它的意思是和用户感兴趣的物品越相似的物品,越应该被推荐。def recommend(u, t, w, k): rank = defaultdict(float

14、) # 推荐结果 reason = defaultdict(dict) # 推荐解释 for j, ruj in tu.iteritems(): sj = sorted(wj.items(), key=itemgetter(1), reverse=True) for i, wij in sj:k: if i not in tu: # 排除已经喜欢的物品 ranki += wij * ruj reasonij = wij * ruj return rankItemCF算法的一个好处是可以给出推荐解释。对不同K值的测量可以看到:准确率和召回率和K也不成线性关系K和流行度不完全正相关K增大仍会降低覆盖率活跃用户对物品相似度的贡献要小于不活跃用户,可以用和IIF类似的IUF参数来修正物品相似度的计算公式wij=uN(i)N(j)1log(1+|N(u)|)|N(i)|N(j)|将calcItemSimilarity第9行改为wij = wi.get(j, 0) + 1 / math.log(1 +

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1