ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:200.04KB ,
资源ID:10974664      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10974664.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(来源初中数学竞赛辅导初二分册.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

来源初中数学竞赛辅导初二分册.docx

1、来源初中数学竞赛辅导初二分册第八讲非负数时间:2005-9-8 22:29:00 来源:初中数学竞赛辅导(初二分册) 作者:佚名 所谓非负数,是指零和正实数非负数的性质在解题中颇有用处常见的非负数有三种:实数的偶次幂、实数的绝对值和算术根 1实数的偶次幂是非负数若a是任意实数,则a2n0(n为正整数),特别地,当n=1时,有a202实数的绝对值是非负数若a是实数,则性质 绝对值最小的实数是零3一个正实数的算术根是非负数4非负数的其他性质(1)数轴上,原点和原点右边的点表示的数都是非负数(2)有限个非负数的和仍为非负数,即若a1,a2,an为非负数,则a1a2an0(3)有限个非负数的和为零,那

2、么每一个加数也必为零,即若a1,a2,an为非负数,且a1a2an=0,则必有a1a2an0在利用非负数解决问题的过程中,这条性质使用的最多(4)非负数的积和商(除数不为零)仍为非负数(5)最小非负数为零,没有最大的非负数(6)一元二次方程ax2bxc=0(a0)有实数根的充要条件是判别式=b2-4ac为非负数应用非负数解决问题的关键在于能否识别并揭示出题目中的非负数,正确运用非负数的有关概念及其性质,巧妙地进行相应关系的转化,从而使问题得到解决解得a=3,b=-2代入代数式得解 因为(20x-3)2为非负数,所以-(20x-3)20 -(20x-3)20 由,可得:-(20x-3)2=0所以

3、原式=20020=40说明 本题解法中应用了“若a0且a0,则a=0”,这是个很有用的性质例3 已知x,y为实数,且解 因为x,y为实数,要使y的表达式有意义,必有解 因为a2+b2-4a-2b+5=0,所以a2-4a+4+b2-2b+1=0,即 (a-2)2+(b-1)2=0(a-2)2=0,且 (b-1)2=0所以a=2,b=1所以例5 已知x,y为实数,求u=5x2-6xy+2y2+2x-2y+3的最小值和取得最小值时的x,y的值解 u=5x2-6xy+2y2+2x-2y+3=x2+y2+1-2xy+2x-2y+4x2-4xy+yg2+2=(x-y+1)2+(2x-y)2+2因为x,y为

4、实数,所以(x-y+1)20,(2x-y)20,所以u2所以当时,u有最小值2,此时x=1,y=2例6 确定方程(a2+1)x2-2ax+(a2+4)=0的实数根的个数解 将原方程化为a2x2-2ax+1+x2+a2+3=0,即(ax-1)2+x2+a2+3=0对于任意实数x,均有(ax-1)20,x20,a20,30,所以,(ax-1)2+x2+a2+3恒大于0,故(a2+1)x2-2ax+(a2+4)=0无实根例7 求方程的实数根分析 本题是已知一个方程,但要求出两个未知数的值,而要确定两个未知数的值,一般需要两个方程因此,要将已知方程变形,看能否出现新的形式,以利于解题解之得经检验,均为

5、原方程的解说明 应用非负数的性质“几个非负数之和为零,则这几个非负数都为零”,可将一个等式转化为几个等式,从而增加了求解的条件例8 已知方程组数x1,x2,xn的值解 显然,x1=x2=xn=0是方程组的解由已知方程组可知,在x1,x2,xn 中,只要有一个值为零,则必有x1=x2=xn=0所以当x10,x20,xn0时,将原方程组化为将上面n个方程相加得又因为xi为实数,所以经检验,原方程组的解为例9 求满足方程a-b+ab=1的非负整数a,b的值解 由于a,b为非负整数,所以解得例10 当a,b为何值时,方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实数根?解 因为方程有实数根

6、,所以0,即=4(1+a)2-4(3a2+4ab+4b2+2)=4a2+8a+4-12a2-16ab-16b2-8=-8a2-16ab-16b2+8a-40,所以2a2-4ab-4b2+2a-10,-a2+2a-1-a2-4ab-4b20,-(a-1)2-(a+2b)20因为(a-1)20,(a+2b)20,所以例11 已知实数a,b,c,r,p满足pr1,pc-2b+ra=0,求证:一元二次方程ax2+2bx+c=0必有实数根证 由已知得2b=pc+ra,所以=(2b)2-4ac=(pc+ra)2-4ac=p2c2+2pcra+r2a2-4ac=p2c2-2pcra+r2a2+4pcra-4

7、ac=(pc-ra)2+4ac(pr-1)由已知pr-10,又(pc-ra)20,所以当ac0时,0;当ac0时,也有=(2b)2-4ac0综上,总有0,故原方程必有实数根例12 对任意实数x,比较3x2+2x-1与x2+5x-3的大小解 用比差法(3x2+2x-1)-(x2+5x-3)=2x2-3x+2即(3x2+2x-1)-(x2+5x-3)0,所以 3x2+2x-1x2+5x-3说明 比差法是比较两个代数式值的大小的常用方法,除此之外,为判定差是大于零还是小于零,配方法也是常用的方法之一,本例正是有效地利用了这两个方法,使问题得到解决例13 已知a,b,c为实数,设证明:A,B,C中至少

8、有一个值大于零证 由题设有A+B+C=(a2-2a+1)+(b2-2b+1)+(c2-2c+1)+-3=(a-1)2+(b-1)2+(c-1)2+(-3)因为(a-1)20,(b-1)20,(c-1)20,-30,所以A+B+C0若A0,B0,C0,则A+B+C0与A+B+C0不符,所以A,B,C中至少有一个大于零例14 已知a0,b0,求证:分析与证明 对要求证的不等式两边分别因式分解有由不等式的性质知道,只须证明因为a0,b0,所以又因为所以原不等式成立例15 四边形四条边长分别为a,b,c,d,它们满足等式a4+b4+c4+d4=4abcd,试判断四边形的形状解 由已知可得a4+b4+c4+d4-4abcd=0,所以(a4-2a2b2+b4)+(c2-2c2d2+d4)+(2a2b2-4abcd+2c2d2)=0,即 (a2-b2)2+(c2-d2)2+2(ab-cd)2=0因为a,b,c,d都是实数,所以(a2-b2)20,(c2-d2)20,(ab-cd)20,所以由于a,b,c,d都为正数,所以,解,有a=b=c=d故此四边形为菱形练 习 八1求x,y的值:4若实数x,y,z满足条件5已知a,b,c,x,y,z都是非零实数,且a2+b2+c2=x2+y2+z2=ax+by-cz,6若方程k(x2-4)+ax-1=0对一切实数k都有实数根,求a的取值围

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1