ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:203.13KB ,
资源ID:10962994      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10962994.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一款可实现超低压差CMOS线性稳压器的设计方案.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

一款可实现超低压差CMOS线性稳压器的设计方案.docx

1、一款可实现超低压差CMOS线性稳压器的设计方案一款可实现超低压差CMOS线性稳压器的设计方案随着笔记本电脑、手机、PDA等移动设备的普及,对应各种电池电源使用的集成电路的开发越来越活跃,高性能、低成本、超小型封装产品正在加速形成商品化。LDO(低压差)型线性稳压器由于具有结构简单、成本低廉、低噪声、小尺寸等特点,在便携式电子产品中获得了广泛应用。在便携式电子产品中,电源效率越高意味着电池使用时间越长,而线性稳压器效率=输出电压输出电流/输入电压输入电流100%,因此,输入与输出电压差越低、静态电流(输入电流与输出电流之差)就越低,线性稳压器的工作效率就越高。本文设计的低压差线性稳压器其输出电压

2、为2.5V或输出可调,满足当负载为1mA时,最小输入输出压差为0.4mV,当负载为300mA时,压差为120mV,电源电压工作范围为2.56V。电路结构与工作原理低压差线性稳压器的电路结构如图1所示,电路由调整管,带隙基准电压、误差放大器、快速启动、过流限制、过热保护、故障检测、及取样电阻网络等模块 组成,并具有使能、输出可调等功能。调整管作为压差的负载器件,要满足本设计的要求,对于它的选择需重点考虑:首先比较三极管和MOS管,由于三极管是流 控器件,而MOS管是压控器件,比较而言MOS管结构的静态电流更低。其次,NMOS管工作时需一比输出电压高的驱动信号,而PMOS管则无此需求,特别 在低输

3、入电压时要产生一高的驱动电压变得较困难。因此,本文采用PMOS管作为调整管。图1 低压差线性稳压器电路结构电路的工作原理是:在电路上电过程中,快速启动电路内有一个500A的电流源的对CC端的旁路电容C充电,使电路尽快上电启动,误差运放的同相端 经由取样电阻R1、R2对输出电压V0采样,再与Vref比较后输出放大信号,控制调整PMOS管的栅极电压,使输出电压V0保持稳定,即:电路在工作过程中出现过流、过热情况时,过流限制与过热保护电路会快速响应,调整管的导通状态会被减弱、关断,保护电路不致损坏,同时故障检测电路 会产生一个低电平信号。使能端接高电平时电路正常工作;当使能端为低电平时,基准电路及调

4、整PMOS管关断,电路处于等待状态。关键特性分析及设计考虑1、漏失电压(VDO)和静态电流(Iq)漏失电压定义为维持稳压器正常工作的最小输入输出电压差,它是反映调整管调整能力的一个重要因素。对采用PMOS管作调整管的电路,漏失电压由导通 电阻(Ron)和负载电流(Io)确定,即: VDO = IoRon.低压差线性稳压器的静态电流为输入电流与输出电流之差,即: Iq = Ii - Io.静态电流由偏置电流和调整管的栅极驱动电流组成。对PMOS调整管而言,栅极由电压驱动,几乎不产生功耗。在稳压器承载小负载或空载时,漏失电压 极低,静态电流等于稳压器工作时的总偏置电流。设计时注意使PMOS调整管的

5、导通电阻和漏电流尽可能做小,各模块电路在小电流状态下能正常工作。2、功耗( Pw)和效率()低压差线性稳压器的功耗为输入能量与输出能量之差,即:PW = VI II - VO IO = ( VI - VO) IO + VI Iq上式中,前一项是调整管产生的功耗,后一项是静态电流功耗。稳压器效率如前所述可表示为:= IO VO / ( IO + Iq ) VI100 %功耗与效率的表达式充分说明对于低压差线性稳压器,低漏失电压、低静态电流意味着低功耗、高效率。3、负载调整能力和电压调整能力负载调整能力指当输出电流变化时,输出电压维持一定值的能力,定义为:VO /IO,它表征了负载变化而稳压器维持

6、输出在标称值上的能力,该值越小越好。电压调整能力指当输入电压变化时,输出电压维持一定值的能力,定义 为:VO /VI,它表征了输入电压变化而稳压器维持输出在标称值上的能力,该值也是越小越好。对图1的电路结构其负载调整能力和电压调整能力分别为:其中gm为调整管的跨导;Aod为误差放大器的开环差模增益;Rds为调整管源漏间的等效电阻;RL为负载电阻;R1、R2为取样电阻。由上式可见,减小VOIO和VOVI的关键是尽可能增大gm和Aod.4、瞬态响应瞬态响应是稳压器的动态特性,指负载电流阶跃变化引起输出电压的瞬态脉冲现象和输出电压恢复稳定的时间,与输出电容COUT和输出电容的等效串联电阻RESR,以

7、及旁路电容Cb有关,最大瞬态电压脉冲值VTR(MAX)为:其中: IO(MAX)是指发生阶跃变化的最大负载电流;t1是稳压器闭环的响应时间,与稳压器闭环带宽(0dB频率点)有关。设计应用时需考虑降低稳压器的瞬态电压脉冲,即提高稳压器的带宽,增大输出和旁路电容,降低其等效电阻。5、输出精度稳压器的输出精度是由多种因素的变化在输出端共同作用的体现,主要有输入电压变化引起的输出变化VLR、负载变化引起的输出变化VLDR、基准 漂移引起的输出变化Vref、误差放大器失调引起的输出变化Vamp、采样电阻阻值漂移引起的输出变化Vres、以及工作温度变化引起的输出变化 VTC,输出精度ACC由下式给出:其中

8、Vref、Vamp及Vres对ACC影响较大,故基准电压源、误差放大器及采样电阻网络的拓扑结构在设计时需重点考虑。 电路设计及模拟结果1、带隙基准电压源的设计基准电压源是线性稳压器的核心模块,是影响稳压器精度的最主要因素。带隙基准电压源的工作原理是利用晶体管的VBE所具有的负温度系数与不同电流密度下两晶体管之间的VBE所具有正温度系数的特性,乘以合适的系数使二者相互补偿,从而得到低温漂的输出电压。电路实现如图2所示,有:其中n为Q1、Q2的发射区面积比。Hspice模拟结果表明,当电源电压变化范围在2.56V之间时,常温下VREF = 1.254V,温度变化范围在-30120之间时,温漂系数小

9、于1010-6/。图2 带隙基准源电路2、误差放大器的设计误差放大器将输出反馈采样电压与基准电压进行差值信号比较放大,输出后控制调整管的导通状态,保持Vout稳定,其增益、带宽及输入失调电压等指标 对稳压器的输出精度、负载和电压调整能力、瞬态响应等特性有较大影响,电路实现如图3所示。通过Hspice模拟得到该误差放大器在VCC1为4.2V 时,其输入失调电压为0.05V,直流增益为110dB,带宽达到10MHz.3.2.2 子载波数的影响分析在上述光纤参数条件下,传输10 Gb/s,使用16QAM调制可得到8个、32个、64个、256个子载波下接收端的星座图(见图5)、峰均比分布图(见图6)和

10、平均系统误码率随子载波数的变化曲线(见图7)。可以看出,随着子载波数的增加,系统的性能越来越差,误码率会随之增大。这是由于OFDM 系统中每个OFDM 符号是由多个经过调制的子载波相互叠加而成,当多个子载波被相同相位的信号调制时,叠加后就会产生很大的峰值功率,子载波数越多,叠加越多,信号峰值就会越大,引起的光纤非线性效应就会越强,从而造成误码率越高,使OFDM 系统的性能下降。3.2.3 QAM调制方式的影响分析参数为光纤长度Ld =300 km,衰减系数 =0.2 dB/km,光纤二阶色散系数2 =-30e-27 s2/m,步长h =1 km,初始光功率设定为0.64 mW,传输速度为10

11、Gb/s,子载波数为64 个,非线性系数 = 0.01 W-1km-1 时,可得使用16QAM,64QAM,256QAM 调制时系统平均误码率随QAM调制数的变化曲线,如图8所示。可以看出随着QAM 调制的指数越来越高,系统平均误码率越来越高。这是因为QAM 调制数越高,信号序列会被划分的更精细,对光纤的非线性效应造成的影响会更敏感。4 结语正交频分复用信号在光纤中传输会受光纤非线性效应影响。分析OFDM 信号在光纤中传输所受光纤非线性影响,有助于系统性能的改善。利用分步傅里叶方法求解OFDM信号传输的非线性薛定谔方程,分析光纤非线性效应对光纤中OFDM 信号的影响。计算结果表明,在光纤衰减系数、一阶色散系数、光纤非线性系数一定的情况下,系统的误码率随着子载波数的增加而增加。而随着QAM调制方式的更加精细,系统对光纤非线性也越来越敏感。可以看出在使用光纤传输OFDM信号时,调制一个合适子载波数的OFDM信号和选择一个合适的QAM调制方式,对于整个系统来说是关键因素。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1