ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:1.35MB ,
资源ID:10953921      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10953921.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(印染工程染整工程中英文对照外文翻译文献.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

印染工程染整工程中英文对照外文翻译文献.docx

1、印染工程染整工程中英文对照外文翻译文献中英文资料对照外文翻译 (文档含英文原文和中文翻译)外文翻译译文一织物/服装湿传递性能不同测定方法的对比摘要现有几种测定织物/服装汽态水渗透或湿阻的方法,这些方法相互之间的区别与联系并没有得到明确提出,这引出了一个新的命题,即通过对比不同测定方法的结果,找出它们之间的区别与联系。本课题致力于调查4种典型测定方法,包括“湿传递测试法(模型CS-141)”、“ASTM(美国材料与试验协会,英文全称American Society for Testing and Materials)E96正立水杯法”、“新式热阻湿阻仪器测试法”和“出汗暖体人体模型(Walter

2、)测试法”,所得到的结果相互之间的联系。实验结果表明,鉴于测试所用的针织物的透气性的差异范围,尽管这4种方法的结果由于在不同的环境下进行测试而存在些许差异,但它们仍然存在着密切联系。因此,不同测试方法的结果经过适当调整可以相互转换。关键词:织物,汽态水传递比率,织物舒适性,湿阻2.测试方法2.1测试样品此项实验的样品为8块功能性T恤面料商品,其中4块的织物组织为双罗纹,另外4块为平纹。这些样品代表了市场中典型的T恤面料。在模拟试穿者试穿效果的实验中,这些面料被缝制成了长袖T恤,穿在出汗暖体人体模型(Walter)身上。表1列出了实验所用面料的主要规格参数。表1 T恤面料样品的主要规格参数样品编

3、号成分结构厚度(mm)平方米克重(gm-2)155% 40S/2 涤纶45% 40S/2精梳棉平纹(单面)0.696199.3263% 50S 极品特长绒棉37% 涤纶双罗纹抽条0.772148.0362% 40S 精梳棉31% 尼龙7% 莱卡平纹(单面)0.832284.2459% 40S 精梳棉41% 尼龙双罗纹抽条0.955184.35100% 涤纶平纹(单面)0.644193.46100% 涤纶双罗纹0.555121.8744% 40S 精梳棉45% 40S 涤纶短纤11% 莱卡平纹(单面)0.704200.9850% 40S 精梳棉50% 30S 涤纶短纤双罗纹1.071225.62

4、.2 实验测量2.2.1 水分传递测试法(模型CS-141)此项测试所用的仪器水分传递测试仪由Ludlow公司开发。该公司声称这台仪器能够快速简便地测定织物水传递比率。此项测试是基于“气体渗透规律”进行的。这条规律是指质量传递比率与面料阻隔水分渗透的能力、面料上下两侧的压强差以及该面料的厚度相关。图1展示了水分传递测试仪的结构。小密闭水箱两侧的夹子将面料样品夹在其垂直方向的正中间。面料下方是高度低于水槽一半的蒸馏水,上方是在测试开始时经过干燥剂干燥过的空气。水箱内水的表面至面料下表面的空气间隙的高度为10mm。这个水箱被放置在一个温度为20,相对湿度为65%的密室中。实验过程中,水汽从潮湿的一

5、侧(面料下方)经面料样品传递至干燥的一侧(面料上方),湿度传感器保持着对水箱上半部分湿度变化的监测。在湿度从50%上升至60%这个时间段内,相对湿度的上升值每隔3分钟被记录一次。以g重计的每h每m2汽态水传递比率可通过将数据带入下列等式中计算得到。 T = (269 107)(%RH 60/t)(H)/(100 0.02252) (1)式中:%RH上半层与下半层之间的相对湿度差值的平均值;t两次成功读取数据的时间间隔(t=3min);H水箱单位体积的水含量(H=45.74gm-3)。图1 水传递性能测试仪结构2.2.2. 美国材料与试验协会E96正立水杯法此种方法是一种非常常用的测试织物水分传

6、递性能的方法。在环境恒温恒湿和织物面积已知的条件下,这种方法可用于测定织物垂直方向汽态水传递的比率。图2展示了这种测试方法的原理。一个被织物样品覆盖住的装有蒸馏水的杯子被放置在温度20,相对湿度65%的可调节环境中。实验开始时,往杯子内倒入80g的水,这将面料下表面至水面的距离确定为19mm。这项测试长达5天,期间每个杯子质量变化都会每天记录一次。每小时每平方米的汽态水传递比率(WVTR)可以通过将数据带入以下等式中得到。WVTR =G/tA (2)式中:G有织物覆盖住的杯子的重量变化值;t杯子质量变化的时长,以h计;A测试的织物样品的面积,以m2计。图2 ATSM E96汽态水传递测试的原理

7、2.2.3. 新式热阻湿阻仪器测试法新式热阻湿阻仪器由Fan等人开发。这台仪器符合ISO(国际标准组织,英文全称International Organization for Standardization) 11092中明确规定的测试要求。与传统的热阻湿阻仪器相比,它使对水分蒸发散热损失和水分蒸发损失这两者的模拟测试的同时进行成为可能。此外,这台仪器可以零下在温度的条件下运行。图3展示了该仪器的构造和工作原理。图3 新式热阻湿阻仪器通过对蒸发散热损失的测定可得知,放在多孔板、夹在人造皮肤和空气层之间的织物样品的总湿阻可通过将数据带入下列公式中得到。 (3)式中:Ret总湿阻;A织物样品的覆盖面

8、积(A=0.0444 m2);Pss人体皮肤温度(被控制在35)条件下浸透水汽压强;Psa环境温度条件下浸透水汽压强;Ha是环境相对湿度(%)。实验中,首先在仪器上平铺5层同一品种的面料样品,等待稳定后第一次读取Ret值。然后取下一层面料,此时仪器上剩下4层面料,读取Ret值。依此推类,直到所有5层面料都被拿掉。接下来,将获得的Ret值参照读取时织物的层数绘制成统计图,再利用线性回归原理调整后绘制出近似原曲线的直线,这条直线的斜率就是每层织物样品的湿阻的大小。2.2.4.出汗暖体人体模型(Walter)测试法Walter是由Fan和他的同事研发的世界上第一种出汗暖体人体模型。图4展示了一个在测

9、试中穿着T恤的出汗暖体人体模型。这项测试是在室温20.05,相对湿度65.02%,风速0.50.3ms-1的恒温恒湿实验室中进行的。图4 出汗暖体人体模型(Walter)八块面料样品被缝制成尺寸一样的服装。测试过程中,人体模特下半身穿着的裤子始终保持一致。总湿阻经过推算后可用以下方程式计算得到。 (4)式中:A人体模型的表面积;Pss人体皮肤温度条件下浸透水汽压强;Psa环境温度条件下浸透水汽压强;Ha环境相对湿度(%),Res代表事先矫正过的织物湿阻(Res=8.6m2PaW-1);He水分蒸发热能损失(He是通过将水分蒸发热量损失带入公式He = Q得到的);人体皮肤温度(34)条件下水分

10、蒸发所吸收的热量(=0.67Whg-1);Q每小时水分蒸发所损失的热量比率。4.结论在这项研究中,4台仪器被用于测定功能型透气T恤运动面料/服装的汽态水传递比率或湿阻。通过这项研究可以得知,对于典型的功能型T恤面料,从4种测试方法,即 “湿传递测试法(模型CS-141)”、“ASTME96正立水杯法”、“新式热阻湿阻仪器测试法”和“出汗暖体人体模型(Walter)测试法”存在着密切联系。这项研究中的任何一种测试方法得到的结果可以通过使用关联趋势曲线与另一种方法得到的结果进行对比。关联度曲线中存在的一些误差可以解释为由面料种类和测试条件的不同所造成的。作者:F Kar, J Fan and W

11、Yu国籍:香港(香港理工大学纺织与成衣制作系)出处:测量科技杂志 2007年第18卷原文1Comparison of different test methods for the measurement of fabric or garment moisture transfer propertiesAbstractSeveral test methods exist for determining the water vapour permeability or resistance of textile fabrics or garments. The differences and in

12、terrelationships between these methods are not always clear, which presents a problem in comparing results from different test methods. This study is aimed at investigating the relationships between the test results from four typical test methods, including the moisture transmission test (Model CS-1

13、41), ASTM E96 cup method, sweating guarded hot plate method (ISO11092) and the sweating fabric manikin (Walter). For the range of air permeable knitted fabrics tested, it was found that good interrelationships exist between the results from the four types of test methods, although some discrepancies

14、 exist between different tests due to differences in testing conditions. Test results from different moisture transfer test methods can therefore be convertible with due consideration.Keywords: fabric, water vapour transmission rate, clothing comfort, water vapour resistance2. Methods2.1. SamplesFou

15、r interlock and four single jersey functional T-shirt fabrics were chosen from commercial sources for the experiment. The samples represent typical T-shirt fabrics in the market. The fabrics were sewn into long-sleeved T-shirts for the tests on the sweating fabric manikin (Walter) and the wearer tri

16、al experiments. Table 1 lists the characteristics of the fabrics used in this study.Table1 Characteristics of T-shirt fabric samples2.2. Objective physical measurements2.2.1. Moisture transmission test (Model CS-141). The moisture transmission tester was developed by Ludlow Corp., which was claimed

17、to be a fast and simple method to measure the moisture transmission rate of the fabric materials. It is based on the application of the gas permeability law which proposes that the mass transfer rate is proportional to the permeability of the barrier, the pressure differential across the barrier and

18、 the reciprocal of the barrier thickness. The construction of the moisture transmission tester is shown in figure 1. Samples were clamped between two halves of a cell with the lower half of the cell containing distilled water and the upper half dried by a drying agent at the beginning of the test. T

19、he air gap between the water surface in the lower half of the cell and the lower fabric surface was 10 mm. The cell was placed in a controlled temperature and humidity chamber (20 C, 65% RH). Water vapour from the wet side transfers through the sample to the dry side. The humidity sensor detects the

20、 humidity changes in the upper half of the cell. The humidity rise was recorded every 3 min, when the humidity was from 50% to 60%. The moisture vapour transmission rate in grams per hour and per square metre was calculated by T = (269 107)(%RH 60/t)(H)/(100 0.02252) (1)where %RH is the average of t

21、he differences of relative humidity values between the lower and upper halves of the cell, t is the time between successive readings (t = 3 min) and H is the water content in the air at the cell temperature (H=45.74gm-3).Figure1 Construction of the moisture transmission tester.2.2.2. ASTM E96 water

22、vapour transmission testThe ASTM E96 cup method is a very common method for testing the moisture transfer ability of fabrics. It is used to measure the rate of water vapour transmission perpendicularly through a known area of a fabric to a controlled atmosphere. In this method, as shown in figure 2,

23、 a sample covers a cup containing distilled water and placed in a controlled environment of 20,65% relative humidity. By adjusting the initial weight of water in the cup to 80 g, the air gap was set to19 mm. The tests lasted for 5 days and the weight of each cup was recorded daily. The water vapour

24、transmission rate (WVTR) in grams per hour and per square metre was calculated by the following equation:WVTR =G/tA (2)where G is weight change of the cup with fabric sample in grams, t is the time during which G occurred in hours and A is the testing area in square metres.Figure2 The principle of t

25、he ASTM E96 water vapour transmission test.2.2.3. Sweating guarded hot plateThis instrument was developed by Fan et al. It meets the requirements specified in the testing method of ISO 11092. Compared with conventional sweating guarded hot plates, it allows simultaneous measurement of evaporative he

26、at loss and water loss. The instrument can also be placed in subzero conditions for testing. Figure 3 shows the schematic diagram and the apparatus of the instrument.Figure3 Sweating guarded hot plateFrom the measurement of the evaporative heat loss, the total moisture vapour resistance of the fabri

27、c sample on the plate together with the manmade skin and the surface air layer can be calculated by (3)where Ret is the total moisture vapour resistance, A is the sample covering area (A = 0.0444 m2), Pss is the saturated vapour pressure at the skin temperature (controlled at 35 ), Psa is the satura

28、ted vapour pressure at the ambient temperature and Ha is the ambient relative humidity (%).During the testing, five layers of fabric samples were first placed on the instrument. After stabilization, the Ret value, when five layers of fabric samples were placed, was measured. Then one layer of fabric

29、 sample was taken off and the Ret value, when four layers of fabric samples were placed, was measured. The experiment continued with the Ret value for one, two, three, four and five layers of samples being obtained. The Ret value was then plotted against the number of layers in a graph. After fittin

30、g the data with a straight line by linear regression, the slope of the line is then the moisture vapour resistance of a single layer of the fabric sample.2.2.4. Sweating fabric manikin (Walter)Sweating fabric manikin (Walter) is the first sweating fabric manikin developed by Fan and his co-workers.

31、Figure 4 shows the manikin wearing a T-shirt during the test. The experiment was carried out in a climatic chamber at 20.0 0.5 and 65.0 2% RH with an air velocity of 0.5 0.3 m s1.Figure4 Sweating fabric manikin (Walter)The T-shirts made of the eight fabrics were all in the same size. During the test

32、s, the pants were kept the same for all T-shirt samples. The total moisture vapour resistance was calculated using the following formula: (4)where A is the surface area of the manikin, Pss is the saturated vapour pressure at the skin temperature, Psa is the saturated vapour pressure at the ambient temperature and Ha is the ambient relative

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1