ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:367.09KB ,
资源ID:10741779      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/10741779.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ds18b20汇编设计报告附电路图和程序.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

ds18b20汇编设计报告附电路图和程序.docx

1、ds18b20汇编设计报告附电路图和程序基于AT89C51单片机和DS18B20的数字温度计1 课题说明随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。本设计选用AT89C51型单片机作为主控制器件,DS18B20作为测温传感器,通过LCD1602实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理

2、化学性能稳定,线性度较好,在0100最大线性偏差小于0.01。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。2 实现方法采用数字温度芯片DS18B20 测量温度,输出信号全数字化。采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,它直接输出温度的数字信号,也可直接与计算机连接。采用AT89C51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度

3、检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限温度。该系统扩展性非常强。该测温系统电路简单、精确度较高、实现方便、软件设计也比较简单。系统框图如图1所示。图1 DS18B20温度测温系统框图3 硬件设计3.1 单片机最小系统设计3.1.1 电源电路图2 电源电路3.1.2 振荡电路与复位电路 图3 振荡电路 图4 复位电路3.2 DS18B20与单片机的接口电路图5 DS18B20与单片机的接口电路3.3 PROTEUS仿真电路图图6 PROTEUS仿真电路图4 软件设计系统程序主要包括主程序、读取温度子程序、数据转换子程序、显示数据子程序等。4.1 程序流程4.1.1 主程序

4、流程图主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。图7 主程序流程图4.1.2 各子程序流程图1、初始化程序所有操作都必须由初始化脉冲开始,波形如图,单片机先输出一个480960us低电平到DQ引脚,再将DQ引脚置高电平,过1560us后检测DQ引脚状态,若为低电平则DS18B20工作正常,否则初始化失败,不能正常测量温度。2、 读取温度子程序 读取温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。主要包括以下三个命令:(1

5、)写暂存器命令 【4EH】这个命令为由TH寄存器开始向DS18B20暂存器写入数据,4EH命令后的3字节数据将被保存到暂存器的地址2、3、4(TH、TL、CONFIG)三个字节。所有数据必须在复位脉冲前写完。即如果只想写一个字节的数据到地址2,可按如下流程:1、 初始化;2、 写0CCH,跳过ROM检测;3、 写4EH; 4、 写1字节数据;5、 复位,即向DQ输出480960us低电平(2)读暂存命令【BEH】这个命令由字节0读取9个暂存器内容,如果不需要读取所有暂存内容,可随时输出复位脉冲终止读取过程(3)转换温度命令【44H】这个命令启动温度转换过程。转换温度时DS18B20保持空闲状态

6、,此时如果单片机发出读命令, DS18B20将输出0直到转换完成,转换完成后将输出1。图8 读取温度子程序3、写流程图写时隙:写时隙由DQ引脚的下降沿引起。18B20有写1和写0两种写时隙。所有写时隙必须持续至少60s,两个时隙之间至少有1s的恢复时间。DS18B20在DQ下降沿后15s60s间采样DQ引脚,若此时DQ为高电平,则写入一位1,若此时DQ为低电平,则写入一位0,如图9所示。所以,若想写入1,则单片机应先将DQ置低电平,15us后再将DQ置高电平,持续45s;若要写入0,则将DQ置低电平,持续60s。图9 写流程图4、读流程图读时隙:读时隙由DQ下降沿引起,持续至少1s的低电平后释

7、放总线(DQ置1)DS18B20的输出数据将在下降沿15s后输出,此时单片机可读取1位数据。读时隙结束时要将DQ置1。所有读时隙必须持续至少60s,两个时隙之间至少有1s的恢复时间。图10 读流程图4.4 汇编语言程序源代码 DATA_BUS BIT P3.3 FLAG BIT 00H TEMP_L EQU 30H TEMP_H EQU 31H TEMP_DP EQU 32H TEMP_INT EQU 33H TEMP_BAI EQU 34H TEMP_SHI EQU 35H TEMP_GE EQU 36H DIS_BAI EQU 37H DIS_SHI EQU 38H DIS_GE EQU

8、39H DIS_DP EQU 3AH DIS_ADD EQU 3BH ORG 0000H AJMP START ORG 0050HSTART: MOV SP, #40H MAIN: LCALL READ_TEMP LCALL PROCESS AJMP MAIN ;读温度程序 READ_TEMP: LCALL RESET_PULSE MOV A, #0CCH LCALL WRITE MOV A, #44H LCALL WRITE LCALL DISPLAY LCALL RESET_PULSE MOV A, #0CCH LCALL WRITE MOV A, #0BEH LCALL WRITE LC

9、ALL READ RET;复位脉冲程序RESET_PULSE:RESET: SETB DATA_BUS NOP NOP CLR DATA_BUS MOV R7, #255 DJNZ R7, $ SETB DATA_BUS MOV R7, #30 DJNZ R7,$ JNB DATA_BUS, SETB_FLAG CLR FLAG AJMP NEXTSETB_FLAG: SETB FLAGNEXT: MOV R7, #120 DJNZ R7, $ SETB DATA_BUS JNB FLAG, RESET RET;写命令WRITE: SETB DATA_BUS MOV R6, #8 CLR CW

10、RITING: CLR DATA_BUS MOV R7, #5 DJNZ R7, $ RRC A MOV DATA_BUS, C MOV R7, #30H DJNZ R7, $ SETB DATA_BUS NOP DJNZ R6, WRITING RET;循环显示段位DISPLAY: MOV R4, #200 DIS_LOOP: MOV A, DIS_DP MOV P2, #0FFH MOV P0, A CLR P2.7 LCALL DELAY2MS MOV A, DIS_GE MOV P2, #0FFH MOV P0, A SETB P0.7 CLR P2.6 LCALL DELAY2MS

11、MOV A, DIS_SHI MOV P2, #0FFH MOV P0, A CLR P2.5 LCALL DELAY2MS MOV A, DIS_BAI MOV P2, #0FFH MOV P0, A MOV A, TEMP_BAI CJNE A, #0,SKIP AJMP NEXTT SKIP: CLR P2.4 LCALL DELAY2MS NEXTT: NOP DJNZ R4, DIS_LOOP RET;读命令READ: SETB DATA_BUS MOV R0, #TEMP_L MOV R6, #8 MOV R5, #2 CLR CREADING: CLR DATA_BUS NOP

12、NOP SETB DATA_BUS NOP NOP NOP NOP MOV C, DATA_BUS RRC A MOV R7, #30H DJNZ R7, $ SETB DATA_BUS DJNZ R6, READING MOV R0, A INC R0 MOV R6, #8 SETB DATA_BUS DJNZ R5, READING RET;数据处理PROCESS: MOV R7, TEMP_L MOV A, #0FH ANL A, R7 MOV TEMP_DP,A MOV R7, TEMP_L MOV A, #0F0H ANL A, R7 SWAP A MOV TEMP_L, A MOV

13、 R7, TEMP_H MOV A, #0FH ANL A, R7 SWAP A ORL A, TEMP_L MOV B, #64H DIV AB MOV TEMP_BAI,A MOV A, #0AH XCH A, B DIV AB MOV TEMP_SHI,A MOV TEMP_GE,B MOV A, TEMP_DP MOV DPTR, #TABLE_DP MOVC A, A+DPTR MOV DPTR, #TABLE_INTER MOVC A, A+DPTR MOV DIS_DP, A MOV A, TEMP_GE MOV DPTR, #TABLE_INTER MOVC A, A+DPTR

14、 MOV DIS_GE, A MOV A, TEMP_SHI MOV DPTR, #TABLE_INTER MOVC A, A+DPTR MOV DIS_SHI, A MOV A, TEMP_BAI MOV DPTR, #TABLE_INTER MOVC A, A+DPTR MOV DIS_BAI ,A RETDELAY2MS: MOV R6, #3LOOP3: MOV R5, #250 DJNZ R5, $ DJNZ R6, LOOP3 RETTABLE_DP: DB 00H,01H,01H,02H,03H,03H,04H,04H,05H,06H DB 06H,07H,08H,08H,09H

15、,09HTABLE_INTER: DB 03FH,006H,05BH,04FH,066H DB 06DH,07DH,07H,07FH,06FH END5 DS18B20简单介绍DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。温度测量范围为-55+125 摄氏度,可编程为9位12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。被测温度用符

16、号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。5.1 DS18B20 的性能特点如下:独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温DS18B20在使用中不需

17、要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内适应电压范围更宽,电压范围:3.05.5V,在寄生电源方式下可由数据线供电温范围55125,在-10+85时精度为0.5零待机功耗可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快用户可定义报警设置报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠

18、错能力负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作以上特点使DS18B20非常适用与多点、远距离温度检测系统。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列、各种封装形式如图12所示,DQ 为数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。图 12 外部封装形式5.2 DS18B20使用中的注意事项DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线

19、少等优点,但在实际应用中也应注意以下几方面的问题:DS18B20 从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。在实际使用中发现,应使电源电压保持在5V 左右,若电源电压过低,会使所测得的温度精度降低。较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。在DS18B20的有关资料中均未提及单总线上所挂DS18B2

20、0 数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此,当单总线上所挂DS18B20 超过8 个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。在DS18B20测温程序设计中,向DS18B20 发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20 接触不好或断线,当程序读该DS18B20 时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。5.3 DS18B20内部结构图13为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放

21、中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。DS18B20采用3脚PR35 封装或8脚SOIC封装,其内部结构框图如图 6所示图 13DS18B20内部结构框图64 b闪速ROM的结构如下:8bit检验CRC48bit序列号8bit工厂代码(10H)MSB LSB MSB LSB MSB LSB开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48 位,最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。温度报警触发器和,可通过软件写入户报

22、警上下限。主机操作ROM的命令有五种,如表所列DS18B20 温度传感器的内部存储器还包括一个高速暂存和一个非易失性的可电擦除的EERAM。高速暂存RAM 的结构为字节的存储器,结构如图14所示。便笺式存储器(上电状态)温度测量值LSB(50H)温度测量值MSB(50HTH高温寄存器TL低温寄存器配位寄存器预留(FFH)预留(OCH)预留(IOH)循环冗余码校验(CRC) (85)E2PROMByte0Byte1TH高温寄存器TL低温寄存器配位寄存器Byte2Byte3Byte4Byte5Byte6Byte7Byte8 图 14 高速暂存RAM结构图前2个字节包含测得的温度信息,第3和第4字节

23、和的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。温度低位温度高位THTL配置保留保留保留8位CRCLSB MSB当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.062 5 /LSB形式表示。温度值格式如下:232221202-12-22-32-4 MSB LSBSSSSS262524MSB LSB这是12位转化

24、后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。图中,S表示位。对应的温度计算:当符号位S=0时,表示测得的温度植为正值,直接将二进制位转换为十进制;当S=1时,表示测得的温度植为负值,先将补码变换为原码,再计算十进制值。例如+125的数字输出为07D0H,+25.0625的数字输出为0191H,-25.0625的数字输出为FF6FH,-55的数字输出为FC90H。DS18B20温度传感

25、器主要用于对温度进行测量,数据可用16位符号扩展的二进制补码读数形式提供,并以0.0625LSB形式表示。表2是部分温度值对应的二进制温度表示数据。表2 部分温度值温度/二进制表示十六进制表示+12500000111 1101000007D0H+25.062500000001 100100010191H+0.500000000 000010000008H000000000 000000000000H-0.511111111 11111000FFF8H-25.062511111110 01101111FE6FH-5511111100 10010000FC90HDS18B20完成温度转换后,就把测

26、得的温度值与RAM中的TH、TL字节内容作比较,若TTH或TTL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。在64位ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前 56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数 据是否正确。5.4DS18B20测温原理DS18B20的测温原理如图15所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的

27、脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器 1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温图2中

28、的斜率累加器用于补偿和修正测温过程中的非线性其输出用,于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。图15 DS18B20测温原理图在正常测温情况下,DS1820的测温分辨力为0.5,可采用下述方法获得高分辨率的温度测量结果:首先用DS1820提供的读暂存器指令(BEH)读出以0.5为分辨率的温度

29、测量结果,然后切去测量结果中的最低有效位(LSB),得到所测实际温度的整数部分Tz,然后再用BEH指令取计数器1的计数剩余值Cs和每度计数值CD。考虑到DS1820测量温度的整数部分以0.25、0.75为进位界限的关系,实际温度Ts可用下式计算:Ts=(Tz-0.25)+(CD-Cs)/CD6 总结与体会在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。从这

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1